Datasets:

Modalities:
Audio
Text
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
File size: 1,522 Bytes
f3bad19
 
 
8b477b5
f3bad19
 
 
 
 
 
 
8b477b5
 
 
 
 
d23c839
 
 
 
f78bf44
d23c839
8b477b5
 
 
f78bf44
 
 
 
 
d017675
f78bf44
 
 
 
1282903
f78bf44
 
b0df395
8b477b5
 
 
 
cf4fcaa
8b477b5
 
ba23be3
8b477b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
task_categories:
- automatic-speech-recognition
- automatic-lyrics-transcription
language:
- en
- fr
- de
- es
tags:
- music
- lyrics
- evaluation
- benchmark
- transcription
pretty_name: 'JamALT: A Formatting-Aware Lyrics Transcription Benchmark'
---

# JamALT: A Formatting-Aware Lyrics Transcription Benchmark

JamALT is a revision of the [JamendoLyrics](https://github.com/f90/jamendolyrics) dataset, adapted for use as an automatic lyrics transcription (ALT) benchmark.

The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling, punctuation, and formatting.

See the [project website](https://audioshake.github.io/jam-alt/) for details.

## Loading the data

```python
from datasets import load_dataset
dataset = load_dataset("audioshake/jam-alt")["test"]
```

A subset is defined for each language (`en`, `fr`, `de`, `es`);
for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.

Other arguments can be specified to control audio loading:
- `with_audio=False` to skip loading audio.
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
- `decode_audio=False` to skip decoding the audio and just get paths to the MP3 files.

## Running evaluation

Use the [`alt-eval`](https://github.com/audioshake/alt-eval) package for evaluation:
```python
from alt_eval import compute_metrics
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```