Datasets:
File size: 1,522 Bytes
f3bad19 8b477b5 f3bad19 8b477b5 d23c839 f78bf44 d23c839 8b477b5 f78bf44 d017675 f78bf44 1282903 f78bf44 b0df395 8b477b5 cf4fcaa 8b477b5 ba23be3 8b477b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
task_categories:
- automatic-speech-recognition
- automatic-lyrics-transcription
language:
- en
- fr
- de
- es
tags:
- music
- lyrics
- evaluation
- benchmark
- transcription
pretty_name: 'JamALT: A Formatting-Aware Lyrics Transcription Benchmark'
---
# JamALT: A Formatting-Aware Lyrics Transcription Benchmark
JamALT is a revision of the [JamendoLyrics](https://github.com/f90/jamendolyrics) dataset, adapted for use as an automatic lyrics transcription (ALT) benchmark.
The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling, punctuation, and formatting.
See the [project website](https://audioshake.github.io/jam-alt/) for details.
## Loading the data
```python
from datasets import load_dataset
dataset = load_dataset("audioshake/jam-alt")["test"]
```
A subset is defined for each language (`en`, `fr`, `de`, `es`);
for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.
Other arguments can be specified to control audio loading:
- `with_audio=False` to skip loading audio.
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
- `decode_audio=False` to skip decoding the audio and just get paths to the MP3 files.
## Running evaluation
Use the [`alt-eval`](https://github.com/audioshake/alt-eval) package for evaluation:
```python
from alt_eval import compute_metrics
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
``` |