Datasets:

Modalities:
Audio
Text
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
jam-alt / jam-alt.py
cifkao's picture
Fix the name field
7c6487b
raw
history blame
3.79 kB
"""HuggingFace loading script for the JamALT dataset."""
import csv
from dataclasses import dataclass
import json
import os
from pathlib import Path
from typing import Optional
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
"""
# TODO: Add description of the dataset here
_DESCRIPTION = """\
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here
_LICENSE = ""
_METADATA_FILENAME = "metadata.csv"
_LANGUAGE_NAME_TO_CODE = {
"English": "en",
"French": "fr",
"German": "de",
"Spanish": "es",
}
@dataclass
class JamAltBuilderConfig(datasets.BuilderConfig):
language: Optional[str] = None
with_audio: bool = False
decode_audio: bool = True
sampling_rate: Optional[int] = None
mono: bool = True
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class JamAltDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIG_CLASS = JamAltBuilderConfig
BUILDER_CONFIGS = [JamAltBuilderConfig("default")]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
feat_dict = {
"name": datasets.Value("string"),
"text": datasets.Value("string"),
"language": datasets.Value("string"),
}
if self.config.with_audio:
feat_dict["audio"] = datasets.Audio(
decode=self.config.decode_audio,
sampling_rate=self.config.sampling_rate,
mono=self.config.mono,
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(feat_dict),
supervised_keys=("audio", "text") if "audio" in feat_dict else None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
metadata_path = dl_manager.download(_METADATA_FILENAME)
audio_paths, text_paths, metadata = [], [], []
with open(metadata_path, encoding="utf-8") as f:
for row in csv.DictReader(f):
if (
self.config.language is None
or _LANGUAGE_NAME_TO_CODE[row["Language"]] == self.config.language
):
audio_paths.append("audio/" + row["Filepath"])
text_paths.append(
"lyrics/" + os.path.splitext(row["Filepath"])[0] + ".txt"
)
metadata.append(row)
text_paths = dl_manager.download(text_paths)
audio_paths = (
dl_manager.download(audio_paths) if self.config.with_audio else None
)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs=dict(
text_paths=text_paths,
audio_paths=audio_paths,
metadata=metadata,
),
),
]
def _generate_examples(self, text_paths, audio_paths, metadata):
if audio_paths is None:
audio_paths = [None] * len(text_paths)
for text_path, audio_path, meta in zip(text_paths, audio_paths, metadata):
name = os.path.splitext(meta["Filepath"])[0]
with open(text_path, encoding="utf-8") as text_f:
record = {
"name": name,
"text": text_f.read(),
"language": _LANGUAGE_NAME_TO_CODE[meta["Language"]],
}
if audio_path is not None:
record["audio"] = audio_path
yield name, record