"""HuggingFace loading script for the JamALT dataset.""" import csv from dataclasses import dataclass import json import os from pathlib import Path from typing import Optional import datasets # TODO: Add BibTeX citation _CITATION = """\ """ # TODO: Add description of the dataset here _DESCRIPTION = """\ """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here _LICENSE = "" _METADATA_FILENAME = "metadata.csv" _LANGUAGE_NAME_TO_CODE = { "English": "en", "French": "fr", "German": "de", "Spanish": "es", } @dataclass class JamAltBuilderConfig(datasets.BuilderConfig): language: Optional[str] = None with_audio: bool = False decode_audio: bool = True sampling_rate: Optional[int] = None mono: bool = True # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class JamAltDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("0.0.0") BUILDER_CONFIG_CLASS = JamAltBuilderConfig BUILDER_CONFIGS = [JamAltBuilderConfig("default")] DEFAULT_CONFIG_NAME = "default" def _info(self): feat_dict = { "name": datasets.Value("string"), "text": datasets.Value("string"), "language": datasets.Value("string"), } if self.config.with_audio: feat_dict["audio"] = datasets.Audio( decode=self.config.decode_audio, sampling_rate=self.config.sampling_rate, mono=self.config.mono, ) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(feat_dict), supervised_keys=("audio", "text") if "audio" in feat_dict else None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): metadata_path = dl_manager.download(_METADATA_FILENAME) audio_paths, text_paths, metadata = [], [], [] with open(metadata_path, encoding="utf-8") as f: for row in csv.DictReader(f): if ( self.config.language is None or _LANGUAGE_NAME_TO_CODE[row["Language"]] == self.config.language ): audio_paths.append("audio/" + row["Filepath"]) text_paths.append( "lyrics/" + os.path.splitext(row["Filepath"])[0] + ".txt" ) metadata.append(row) text_paths = dl_manager.download(text_paths) audio_paths = ( dl_manager.download(audio_paths) if self.config.with_audio else None ) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs=dict( text_paths=text_paths, audio_paths=audio_paths, metadata=metadata, ), ), ] def _generate_examples(self, text_paths, audio_paths, metadata): if audio_paths is None: audio_paths = [None] * len(text_paths) for text_path, audio_path, meta in zip(text_paths, audio_paths, metadata): name = os.path.splitext(os.path.basename(text_path))[0] with open(text_path, encoding="utf-8") as text_f: record = { "name": name, "text": text_f.read(), "language": _LANGUAGE_NAME_TO_CODE[meta["Language"]], } if audio_path is not None: record["audio"] = audio_path yield name, record