File size: 43,946 Bytes
7b314d9
 
 
4054c46
7b314d9
 
 
 
 
 
 
4054c46
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28112de
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4054c46
a908c9c
 
7b314d9
 
a908c9c
 
7b314d9
 
 
 
 
 
a908c9c
 
7b314d9
 
a908c9c
 
7b314d9
4054c46
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a908c9c
7b314d9
a908c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b314d9
a908c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f1ba8
 
 
 
 
 
 
 
 
 
 
 
 
c0cbbad
 
 
 
 
 
 
 
 
 
 
a908c9c
 
 
 
 
 
 
7b314d9
a908c9c
 
 
 
 
 
 
 
 
 
 
 
7b314d9
 
 
a908c9c
 
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f1ba8
 
 
 
 
c0cbbad
 
67f1ba8
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424d69
7b314d9
 
 
 
 
 
 
 
1424d69
7b314d9
1424d69
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424d69
7b314d9
 
 
1424d69
7b314d9
 
67f1ba8
 
c0cbbad
67f1ba8
c0cbbad
67f1ba8
c0cbbad
 
7b314d9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
pretty_name: Chronos datasets
dataset_info:
- config_name: dominick
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: im_0
    dtype: int64
  splits:
  - name: train
    num_bytes: 477140250
    num_examples: 100014
  download_size: 42290010
  dataset_size: 477140250
- config_name: electricity_15min
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: consumption_kW
    sequence: float64
  splits:
  - name: train
    num_bytes: 670989988
    num_examples: 370
  download_size: 284497403
  dataset_size: 670989988
  license: CC BY 4.0
  homepage: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
- config_name: ercot
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ns]
  - name: target
    sequence: float32
  splits:
  - name: train
    num_examples: 8
  download_size: 14504261
- config_name: exchange_rate
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float32
  splits:
  - name: train
    num_examples: 8
  download_size: 401501
  license: MIT
  homepage: https://github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate
- config_name: m4_daily
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 160504176
    num_examples: 4227
  download_size: 65546675
  dataset_size: 160504176
  homepage: https://github.com/Mcompetitions/M4-methods
- config_name: m4_hourly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 5985544
    num_examples: 414
  download_size: 1336971
  dataset_size: 5985544
  homepage: https://github.com/Mcompetitions/M4-methods
- config_name: m4_monthly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 181372969
    num_examples: 48000
  download_size: 52772258
  dataset_size: 181372969
  homepage: https://github.com/Mcompetitions/M4-methods
- config_name: m4_quarterly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 39205397
    num_examples: 24000
  download_size: 13422579
  dataset_size: 39205397
  homepage: https://github.com/Mcompetitions/M4-methods
- config_name: m4_weekly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 5955806
    num_examples: 359
  download_size: 2556691
  dataset_size: 5955806
  homepage: https://github.com/Mcompetitions/M4-methods
- config_name: m4_yearly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 14410042
    num_examples: 23000
  download_size: 5488601
  dataset_size: 14410042
  homepage: https://github.com/Mcompetitions/M4-methods
- config_name: m5
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: item_id
    dtype: string
  - name: target
    sequence: float32
  - name: dept_id
    dtype: string
  - name: cat_id
    dtype: string
  - name: store_id
    dtype: string
  - name: state_id
    dtype: string
  splits:
  - name: train
    num_bytes: 574062630
    num_examples: 30490
  download_size: 78063286
  dataset_size: 574062630
  homepage: https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules
- config_name: mexico_city_bikes
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 618999406
    num_examples: 494
  download_size: 103206946
  dataset_size: 618999406
  homepage: https://ecobici.cdmx.gob.mx/en/open-data/
- config_name: monash_australian_electricity
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 18484319
    num_examples: 5
  download_size: 16856156
  dataset_size: 18484319
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_car_parts
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 2232790
    num_examples: 2674
  download_size: 70278
  dataset_size: 2232790
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_cif_2016
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 115096
    num_examples: 72
  download_size: 70876
  dataset_size: 115096
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_covid_deaths
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 907326
    num_examples: 266
  download_size: 58957
  dataset_size: 907326
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_electricity_hourly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 135103443
    num_examples: 321
  download_size: 31139117
  dataset_size: 135103443
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_electricity_weekly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 807315
    num_examples: 321
  download_size: 333563
  dataset_size: 807315
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_fred_md
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 1248369
    num_examples: 107
  download_size: 412207
  dataset_size: 1248369
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_hospital
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: int64
  splits:
  - name: train
    num_examples: 767
  download_size: 117038
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_kdd_cup_2018
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: city
    dtype: string
  - name: station
    dtype: string
  - name: measurement
    dtype: string
  splits:
  - name: train
    num_bytes: 47091540
    num_examples: 270
  download_size: 8780105
  dataset_size: 47091540
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_london_smart_meters
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 2664567976
    num_examples: 5560
  download_size: 597389119
  dataset_size: 2664567976
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_m1_monthly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 907691
    num_examples: 617
  download_size: 244372
  dataset_size: 907691
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_m1_quarterly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 162961
    num_examples: 203
  download_size: 48439
  dataset_size: 162961
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_m1_yearly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 75679
    num_examples: 181
  download_size: 30754
  dataset_size: 75679
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_m3_monthly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 2708124
    num_examples: 1428
  download_size: 589699
  dataset_size: 2708124
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_m3_quarterly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 606428
    num_examples: 756
  download_size: 188543
  dataset_size: 606428
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_m3_yearly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 305359
    num_examples: 645
  download_size: 100184
  dataset_size: 305359
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_nn5_weekly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float32
  splits:
  - name: train
    num_examples: 111
  download_size: 64620
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_pedestrian_counts
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: int64
  splits:
  - name: train
    num_bytes: 50118790
    num_examples: 66
  download_size: 12377357
  dataset_size: 50118790
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_rideshare
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: source_location
    dtype: string
  - name: provider_name
    dtype: string
  - name: provider_service
    dtype: string
  - name: price_min
    sequence: float64
  - name: price_mean
    sequence: float64
  - name: price_max
    sequence: float64
  - name: distance_min
    sequence: float64
  - name: distance_mean
    sequence: float64
  - name: distance_max
    sequence: float64
  - name: surge_min
    sequence: float64
  - name: surge_mean
    sequence: float64
  - name: surge_max
    sequence: float64
  - name: api_calls
    sequence: float64
  - name: temp
    sequence: float64
  - name: rain
    sequence: float64
  - name: humidity
    sequence: float64
  - name: clouds
    sequence: float64
  - name: wind
    sequence: float64
  splits:
  - name: train
    num_bytes: 10819910
    num_examples: 156
  download_size: 781873
  dataset_size: 10819910
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_saugeenday
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: T1
    sequence: float64
  splits:
  - name: train
    num_bytes: 379875
    num_examples: 1
  download_size: 222678
  dataset_size: 379875
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_temperature_rain
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: t_mean
    sequence: float64
  - name: prcp_sum
    sequence: float64
  - name: t_max
    sequence: float64
  - name: t_min
    sequence: float64
  - name: fcst_0_dailypop
    sequence: float64
  - name: fcst_0_dailypop1
    sequence: float64
  - name: fcst_0_dailypop10
    sequence: float64
  - name: fcst_0_dailypop15
    sequence: float64
  - name: fcst_0_dailypop25
    sequence: float64
  - name: fcst_0_dailypop5
    sequence: float64
  - name: fcst_0_dailypop50
    sequence: float64
  - name: fcst_0_dailyprecip
    sequence: float64
  - name: fcst_0_dailyprecip10pct
    sequence: float64
  - name: fcst_0_dailyprecip25pct
    sequence: float64
  - name: fcst_0_dailyprecip50pct
    sequence: float64
  - name: fcst_0_dailyprecip75pct
    sequence: float64
  - name: fcst_1_dailypop
    sequence: float64
  - name: fcst_1_dailypop1
    sequence: float64
  - name: fcst_1_dailypop10
    sequence: float64
  - name: fcst_1_dailypop15
    sequence: float64
  - name: fcst_1_dailypop25
    sequence: float64
  - name: fcst_1_dailypop5
    sequence: float64
  - name: fcst_1_dailypop50
    sequence: float64
  - name: fcst_1_dailyprecip
    sequence: float64
  - name: fcst_1_dailyprecip10pct
    sequence: float64
  - name: fcst_1_dailyprecip25pct
    sequence: float64
  - name: fcst_1_dailyprecip50pct
    sequence: float64
  - name: fcst_1_dailyprecip75pct
    sequence: float64
  - name: fcst_2_dailypop
    sequence: float64
  - name: fcst_2_dailypop1
    sequence: float64
  - name: fcst_2_dailypop10
    sequence: float64
  - name: fcst_2_dailypop15
    sequence: float64
  - name: fcst_2_dailypop25
    sequence: float64
  - name: fcst_2_dailypop5
    sequence: float64
  - name: fcst_2_dailypop50
    sequence: float64
  - name: fcst_2_dailyprecip
    sequence: float64
  - name: fcst_2_dailyprecip10pct
    sequence: float64
  - name: fcst_2_dailyprecip25pct
    sequence: float64
  - name: fcst_2_dailyprecip50pct
    sequence: float64
  - name: fcst_2_dailyprecip75pct
    sequence: float64
  - name: fcst_3_dailypop
    sequence: float64
  - name: fcst_3_dailypop1
    sequence: float64
  - name: fcst_3_dailypop10
    sequence: float64
  - name: fcst_3_dailypop15
    sequence: float64
  - name: fcst_3_dailypop25
    sequence: float64
  - name: fcst_3_dailypop5
    sequence: float64
  - name: fcst_3_dailypop50
    sequence: float64
  - name: fcst_3_dailyprecip
    sequence: float64
  - name: fcst_3_dailyprecip10pct
    sequence: float64
  - name: fcst_3_dailyprecip25pct
    sequence: float64
  - name: fcst_3_dailyprecip50pct
    sequence: float64
  - name: fcst_3_dailyprecip75pct
    sequence: float64
  - name: fcst_4_dailypop
    sequence: float64
  - name: fcst_4_dailypop1
    sequence: float64
  - name: fcst_4_dailypop10
    sequence: float64
  - name: fcst_4_dailypop15
    sequence: float64
  - name: fcst_4_dailypop25
    sequence: float64
  - name: fcst_4_dailypop5
    sequence: float64
  - name: fcst_4_dailypop50
    sequence: float64
  - name: fcst_4_dailyprecip
    sequence: float64
  - name: fcst_4_dailyprecip10pct
    sequence: float64
  - name: fcst_4_dailyprecip25pct
    sequence: float64
  - name: fcst_4_dailyprecip50pct
    sequence: float64
  - name: fcst_4_dailyprecip75pct
    sequence: float64
  - name: fcst_5_dailypop
    sequence: float64
  - name: fcst_5_dailypop1
    sequence: float64
  - name: fcst_5_dailypop10
    sequence: float64
  - name: fcst_5_dailypop15
    sequence: float64
  - name: fcst_5_dailypop25
    sequence: float64
  - name: fcst_5_dailypop5
    sequence: float64
  - name: fcst_5_dailypop50
    sequence: float64
  - name: fcst_5_dailyprecip
    sequence: float64
  - name: fcst_5_dailyprecip10pct
    sequence: float64
  - name: fcst_5_dailyprecip25pct
    sequence: float64
  - name: fcst_5_dailyprecip50pct
    sequence: float64
  - name: fcst_5_dailyprecip75pct
    sequence: float64
  splits:
  - name: train
    num_bytes: 188598927
    num_examples: 422
  download_size: 44967856
  dataset_size: 188598927
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_tourism_monthly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 1755434
    num_examples: 366
  download_size: 334951
  dataset_size: 1755434
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_tourism_quarterly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 688817
    num_examples: 427
  download_size: 177407
  dataset_size: 688817
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_tourism_yearly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 213954
    num_examples: 518
  download_size: 81479
  dataset_size: 213954
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_traffic
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 241983226
    num_examples: 862
  download_size: 52748547
  dataset_size: 241983226
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: monash_weather
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: subset
    dtype: string
  splits:
  - name: train
    num_bytes: 688598539
    num_examples: 3010
  download_size: 133164027
  dataset_size: 688598539
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: nn5
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float32
  splits:
  - name: train
    num_examples: 111
  download_size: 203096
  homepage: http://www.neural-forecasting-competition.com/downloads/NN5/datasets/download.htm
- config_name: solar
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: power_mw
    sequence: float64
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: capacity_mw
    dtype: float64
  - name: subset
    dtype: string
  splits:
  - name: train
    num_bytes: 8689093932
    num_examples: 5166
  download_size: 1507924920
  dataset_size: 8689093932
  homepage: https://www.nrel.gov/grid/solar-power-data.html
- config_name: solar_1h
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: power_mw
    sequence: float64
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: capacity_mw
    dtype: float64
  - name: subset
    dtype: string
  splits:
  - name: train
    num_bytes: 724361772
    num_examples: 5166
  download_size: 124515417
  dataset_size: 724361772
  homepage: https://www.nrel.gov/grid/solar-power-data.html
- config_name: taxi_1h
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: subset
    dtype: string
  - name: lat
    dtype: float64
  - name: lng
    dtype: float64
  splits:
  - name: train
    num_bytes: 28832500
    num_examples: 2428
  download_size: 2265297
  dataset_size: 28832500
  license: Apache 2.0
  homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
- config_name: taxi_30min
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: subset
    dtype: string
  - name: lat
    dtype: float64
  - name: lng
    dtype: float64
  splits:
  - name: train
    num_bytes: 57560596
    num_examples: 2428
  download_size: 4541244
  dataset_size: 57560596
  license: Apache 2.0
  homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
- config_name: training_corpus_kernel_synth_1m
  features:
  - name: target
    sequence: float64
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_examples: 1000000
  download_size: 8313239368
- config_name: training_corpus_tsmixup_10m
  features:
  - name: target
    sequence: float64
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_examples: 10000000
  download_size: 82189589906
- config_name: uber_tlc_daily
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: int64
  splits:
  - name: train
    num_examples: 262
  download_size: 84747
  homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response
- config_name: uber_tlc_hourly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: int64
  splits:
  - name: train
    num_examples: 262
  download_size: 1878515
  homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response
- config_name: ushcn_daily
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: state
    dtype: string
  - name: coop_id
    dtype: int64
  - name: PRCP
    sequence: float64
  - name: SNOW
    sequence: float64
  - name: SNWD
    sequence: float64
  - name: TMAX
    sequence: float64
  - name: TMIN
    sequence: float64
  splits:
  - name: train
    num_bytes: 2259905202
    num_examples: 1218
  download_size: 221089890
  dataset_size: 2259905202
  homepage: https://data.ess-dive.lbl.gov/portals/CDIAC
- config_name: weatherbench_daily
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float32
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: level
    dtype: float64
  - name: subset
    dtype: string
  splits:
  - name: train
    num_bytes: 39510157312
    num_examples: 225280
  download_size: 18924392742
  dataset_size: 39510157312
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_10m_u_component_of_wind
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: float64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 2048
  download_size: 7292845757
  dataset_size: 8617472000
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_10m_v_component_of_wind
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: float64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 2048
  download_size: 7292352508
  dataset_size: 8617472000
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_2m_temperature
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: float64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 2048
  download_size: 7276396852
  dataset_size: 8617453568
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_geopotential
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 87305564613
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_potential_vorticity
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 92426240043
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_relative_humidity
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 94728788382
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_specific_humidity
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 85139896451
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_temperature
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 94081539079
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_toa_incident_solar_radiation
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: float64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 2048
  download_size: 6057953007
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_total_cloud_cover
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: float64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 2048
  download_size: 6628258398
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_total_precipitation
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: float64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 2048
  download_size: 6473160755
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_u_component_of_wind
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 94801498563
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_v_component_of_wind
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 94800557482
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_hourly_vorticity
  features:
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: target
    sequence: float32
  - name: level
    dtype: int64
  - name: timestamp
    sequence: timestamp[ms]
  - name: subset
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_examples: 26624
  download_size: 94720960560
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: weatherbench_weekly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float32
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: level
    dtype: float64
  - name: subset
    dtype: string
  splits:
  - name: train
    num_bytes: 5656029184
    num_examples: 225280
  download_size: 2243012083
  dataset_size: 5656029184
  license: MIT
  homepage: https://github.com/pangeo-data/WeatherBench
- config_name: wiki_daily_100k
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: page_name
    dtype: string
  splits:
  - name: train
    num_bytes: 4389782678
    num_examples: 100000
  download_size: 592554033
  dataset_size: 4389782678
  license: CC0
  homepage: https://dumps.wikimedia.org/other/pageviews/readme.html
- config_name: wind_farms_daily
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 1919187
    num_examples: 337
  download_size: 598834
  dataset_size: 1919187
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
- config_name: wind_farms_hourly
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  splits:
  - name: train
    num_bytes: 45917027
    num_examples: 337
  download_size: 12333116
  dataset_size: 45917027
  license: CC BY 4.0
  homepage: https://zenodo.org/communities/forecasting
configs:
- config_name: dominick
  data_files:
  - split: train
    path: dominick/train-*
- config_name: electricity_15min
  data_files:
  - split: train
    path: electricity_15min/train-*
- config_name: ercot
  data_files:
  - split: train
    path: ercot/train-*
- config_name: exchange_rate
  data_files:
  - split: train
    path: exchange_rate/train-*
- config_name: m4_daily
  data_files:
  - split: train
    path: m4_daily/train-*
- config_name: m4_hourly
  data_files:
  - split: train
    path: m4_hourly/train-*
- config_name: m4_monthly
  data_files:
  - split: train
    path: m4_monthly/train-*
- config_name: m4_quarterly
  data_files:
  - split: train
    path: m4_quarterly/train-*
- config_name: m4_weekly
  data_files:
  - split: train
    path: m4_weekly/train-*
- config_name: m4_yearly
  data_files:
  - split: train
    path: m4_yearly/train-*
- config_name: m5
  data_files:
  - split: train
    path: m5/train-*
- config_name: mexico_city_bikes
  data_files:
  - split: train
    path: mexico_city_bikes/train-*
- config_name: monash_australian_electricity
  data_files:
  - split: train
    path: monash_australian_electricity/train-*
- config_name: monash_car_parts
  data_files:
  - split: train
    path: monash_car_parts/train-*
- config_name: monash_cif_2016
  data_files:
  - split: train
    path: monash_cif_2016/train-*
- config_name: monash_covid_deaths
  data_files:
  - split: train
    path: monash_covid_deaths/train-*
- config_name: monash_electricity_hourly
  data_files:
  - split: train
    path: monash_electricity_hourly/train-*
- config_name: monash_electricity_weekly
  data_files:
  - split: train
    path: monash_electricity_weekly/train-*
- config_name: monash_fred_md
  data_files:
  - split: train
    path: monash_fred_md/train-*
- config_name: monash_hospital
  data_files:
  - split: train
    path: monash_hospital/train-*
- config_name: monash_kdd_cup_2018
  data_files:
  - split: train
    path: monash_kdd_cup_2018/train-*
- config_name: monash_london_smart_meters
  data_files:
  - split: train
    path: monash_london_smart_meters/train-*
- config_name: monash_m1_monthly
  data_files:
  - split: train
    path: monash_m1_monthly/train-*
- config_name: monash_m1_quarterly
  data_files:
  - split: train
    path: monash_m1_quarterly/train-*
- config_name: monash_m1_yearly
  data_files:
  - split: train
    path: monash_m1_yearly/train-*
- config_name: monash_m3_monthly
  data_files:
  - split: train
    path: monash_m3_monthly/train-*
- config_name: monash_m3_quarterly
  data_files:
  - split: train
    path: monash_m3_quarterly/train-*
- config_name: monash_m3_yearly
  data_files:
  - split: train
    path: monash_m3_yearly/train-*
- config_name: monash_nn5_weekly
  data_files:
  - split: train
    path: monash_nn5_weekly/train-*
- config_name: monash_pedestrian_counts
  data_files:
  - split: train
    path: monash_pedestrian_counts/train-*
- config_name: monash_rideshare
  data_files:
  - split: train
    path: monash_rideshare/train-*
- config_name: monash_saugeenday
  data_files:
  - split: train
    path: monash_saugeenday/train-*
- config_name: monash_temperature_rain
  data_files:
  - split: train
    path: monash_temperature_rain/train-*
- config_name: monash_tourism_monthly
  data_files:
  - split: train
    path: monash_tourism_monthly/train-*
- config_name: monash_tourism_quarterly
  data_files:
  - split: train
    path: monash_tourism_quarterly/train-*
- config_name: monash_tourism_yearly
  data_files:
  - split: train
    path: monash_tourism_yearly/train-*
- config_name: monash_traffic
  data_files:
  - split: train
    path: monash_traffic/train-*
- config_name: monash_weather
  data_files:
  - split: train
    path: monash_weather/train-*
- config_name: nn5
  data_files:
  - split: train
    path: nn5/train-*
- config_name: solar
  data_files:
  - split: train
    path: solar/train-*
- config_name: solar_1h
  data_files:
  - split: train
    path: solar_1h/train-*
- config_name: taxi_1h
  data_files:
  - split: train
    path: taxi_1h/train-*
- config_name: taxi_30min
  data_files:
  - split: train
    path: taxi_30min/train-*
- config_name: training_corpus_kernel_synth_1m
  data_files:
  - split: train
    path: training_corpus/kernel_synth_1m/train-*
- config_name: training_corpus_tsmixup_10m
  data_files:
  - split: train
    path: training_corpus/tsmixup_10m/train-*
- config_name: uber_tlc_daily
  data_files:
  - split: train
    path: uber_tlc_daily/train-*
- config_name: uber_tlc_hourly
  data_files:
  - split: train
    path: uber_tlc_hourly/train-*
- config_name: ushcn_daily
  data_files:
  - split: train
    path: ushcn_daily/train-*
- config_name: weatherbench_daily
  data_files:
  - split: train
    path: weatherbench_daily/train-*
- config_name: weatherbench_hourly_10m_u_component_of_wind
  data_files:
  - split: train
    path: weatherbench_hourly/10m_u_component_of_wind/train-*
- config_name: weatherbench_hourly_10m_v_component_of_wind
  data_files:
  - split: train
    path: weatherbench_hourly/10m_v_component_of_wind/train-*
- config_name: weatherbench_hourly_2m_temperature
  data_files:
  - split: train
    path: weatherbench_hourly/2m_temperature/train-*
- config_name: weatherbench_hourly_geopotential
  data_files:
  - split: train
    path: weatherbench_hourly/geopotential/train-*
- config_name: weatherbench_hourly_potential_vorticity
  data_files:
  - split: train
    path: weatherbench_hourly/potential_vorticity/train-*
- config_name: weatherbench_hourly_relative_humidity
  data_files:
  - split: train
    path: weatherbench_hourly/relative_humidity/train-*
- config_name: weatherbench_hourly_specific_humidity
  data_files:
  - split: train
    path: weatherbench_hourly/specific_humidity/train-*
- config_name: weatherbench_hourly_temperature
  data_files:
  - split: train
    path: weatherbench_hourly/temperature/train-*
- config_name: weatherbench_hourly_toa_incident_solar_radiation
  data_files:
  - split: train
    path: weatherbench_hourly/toa_incident_solar_radiation/train-*
- config_name: weatherbench_hourly_total_cloud_cover
  data_files:
  - split: train
    path: weatherbench_hourly/total_cloud_cover/train-*
- config_name: weatherbench_hourly_total_precipitation
  data_files:
  - split: train
    path: weatherbench_hourly/total_precipitation/train-*
- config_name: weatherbench_hourly_u_component_of_wind
  data_files:
  - split: train
    path: weatherbench_hourly/u_component_of_wind/train-*
- config_name: weatherbench_hourly_v_component_of_wind
  data_files:
  - split: train
    path: weatherbench_hourly/v_component_of_wind/train-*
- config_name: weatherbench_hourly_vorticity
  data_files:
  - split: train
    path: weatherbench_hourly/vorticity/train-*
- config_name: weatherbench_weekly
  data_files:
  - split: train
    path: weatherbench_weekly/train-*
- config_name: wiki_daily_100k
  data_files:
  - split: train
    path: wiki_daily_100k/train-*
- config_name: wind_farms_daily
  data_files:
  - split: train
    path: wind_farms_daily/train-*
- config_name: wind_farms_hourly
  data_files:
  - split: train
    path: wind_farms_hourly/train-*
---

# Chronos datasets

Time series datasets used for training and evaluation of the [Chronos](https://github.com/amazon-science/chronos-forecasting) forecasting models.

Note that some Chronos datasets (`ETTh`, `ETTm`, `brazilian_cities_temperature` and `spanish_energy_and_weather`) that rely on a custom builder script are available in the companion repo [`autogluon/chronos_datasets_extra`](https://huggingface.co/datasets/autogluon/chronos_datasets_extra).

See the [paper](https://arxiv.org/abs/2403.07815) for more information.

## Data format and usage

All datasets satisfy the following high-level schema:
- Each dataset row corresponds to a single (univariate or multivariate) time series.
- There exists one column with name `id` and type `string` that contains the unique identifier of each time series.
- There exists one column of type `Sequence` with dtype `timestamp[ms]`. This column contains the timestamps of the observations. Timestamps are guaranteed to have a regular frequency that can be obtained with [`pandas.infer_freq`](https://pandas.pydata.org/docs/reference/api/pandas.infer_freq.html).
- There exists at least one column of type `Sequence` with numeric (`float`, `double`, or `int`) dtype. These columns can be interpreted as target time series.
- For each row, all columns of type `Sequence` have same length.
- Remaining columns of types other than `Sequence` (e.g., `string` or `float`) can be interpreted as static covariates.

Datasets can be loaded using the 🤗 [`datasets`](https://huggingface.co/docs/datasets/en/index) library
```python
import datasets

ds = datasets.load_dataset("autogluon/chronos_datasets", "m4_daily", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays
```

> **NOTE:**  The `train` split of all datasets contains the full time series and has no relation to the train/test split used in the Chronos paper.


Example entry in the `m4_daily` dataset
```python
>>> ds[0]
{'id': 'T000000',
 'timestamp': array(['1994-03-01T12:00:00.000', '1994-03-02T12:00:00.000',
        '1994-03-03T12:00:00.000', ..., '1996-12-12T12:00:00.000',
        '1996-12-13T12:00:00.000', '1996-12-14T12:00:00.000'],
       dtype='datetime64[ms]'),
 'target': array([1017.1, 1019.3, 1017. , ..., 2071.4, 2083.8, 2080.6], dtype=float32),
 'category': 'Macro'}
```

### Converting to pandas
We can easily convert data in such format to a long format data frame
```python
def to_pandas(ds: datasets.Dataset) -> "pd.DataFrame":
    """Convert dataset to long data frame format."""
    sequence_columns = [col for col in ds.features if isinstance(ds.features[col], datasets.Sequence)]
    return ds.to_pandas().explode(sequence_columns).infer_objects()
```
Example output
```python
>>> print(to_pandas(ds).head())
        id           timestamp  target category
0  T000000 1994-03-01 12:00:00  1017.1    Macro
1  T000000 1994-03-02 12:00:00  1019.3    Macro
2  T000000 1994-03-03 12:00:00  1017.0    Macro
3  T000000 1994-03-04 12:00:00  1019.2    Macro
4  T000000 1994-03-05 12:00:00  1018.7    Macro
```


### Dealing with large datasets
Note that some datasets, such as subsets of WeatherBench, are extremely large (~100GB). To work with them efficiently, we recommend either loading them from disk (files will be downloaded to disk, but won't be all loaded into memory)
```python
ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_daily", keep_in_memory=False, split="train")
```
or, for the largest datasets like `weatherbench_hourly_temperature`, reading them in streaming format (chunks will be downloaded one at a time)
```python
ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_hourly_temperature", streaming=True, split="train")
```

## Chronos training corpus with TSMixup & KernelSynth
The training corpus used for training the Chronos models can be loaded via the configs `training_corpus_tsmixup_10m` (10M TSMixup augmentations of real-world data) and `training_corpus_kernel_synth_1m` (1M synthetic time series generated with KernelSynth), e.g.,
```python
ds = datasets.load_dataset("autogluon/chronos_datasets", "training_corpus_tsmixup_10m", streaming=True, split="train")
```
Note that since data in the training corpus was obtained by combining various synthetic & real-world time series, the timestamps contain dummy values that have no connection to the original data.


## License
Different datasets available in this collection are distributed under different open source licenses. Please see `ds.info.license` and `ds.info.homepage` for each individual dataset.

## Citation

If you find these datasets useful for your research, please consider citing the associated paper:
```markdown
@article{ansari2024chronos,
  author  = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
  title   = {Chronos: Learning the Language of Time Series},
  journal = {arXiv preprint arXiv:2403.07815},
  year    = {2024}
}
```