chronos_datasets / README.md
shchuro's picture
Upload dataset
28112de verified
|
raw
history blame
43.9 kB
metadata
annotations_creators:
  - no-annotation
license: other
source_datasets:
  - original
task_categories:
  - time-series-forecasting
task_ids:
  - univariate-time-series-forecasting
  - multivariate-time-series-forecasting
pretty_name: Chronos datasets
dataset_info:
  - config_name: dominick
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: im_0
        dtype: int64
    splits:
      - name: train
        num_bytes: 477140250
        num_examples: 100014
    download_size: 42290010
    dataset_size: 477140250
  - config_name: electricity_15min
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: consumption_kW
        sequence: float64
    splits:
      - name: train
        num_bytes: 670989988
        num_examples: 370
    download_size: 284497403
    dataset_size: 670989988
    license: CC BY 4.0
    homepage: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
  - config_name: ercot
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ns]
      - name: target
        sequence: float32
    splits:
      - name: train
        num_examples: 8
    download_size: 14504261
  - config_name: exchange_rate
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float32
    splits:
      - name: train
        num_examples: 8
    download_size: 401501
    license: MIT
    homepage: >-
      https://github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate
  - config_name: m4_daily
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 160504176
        num_examples: 4227
    download_size: 65546675
    dataset_size: 160504176
    homepage: https://github.com/Mcompetitions/M4-methods
  - config_name: m4_hourly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 5985544
        num_examples: 414
    download_size: 1336971
    dataset_size: 5985544
    homepage: https://github.com/Mcompetitions/M4-methods
  - config_name: m4_monthly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 181372969
        num_examples: 48000
    download_size: 52772258
    dataset_size: 181372969
    homepage: https://github.com/Mcompetitions/M4-methods
  - config_name: m4_quarterly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 39205397
        num_examples: 24000
    download_size: 13422579
    dataset_size: 39205397
    homepage: https://github.com/Mcompetitions/M4-methods
  - config_name: m4_weekly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 5955806
        num_examples: 359
    download_size: 2556691
    dataset_size: 5955806
    homepage: https://github.com/Mcompetitions/M4-methods
  - config_name: m4_yearly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 14410042
        num_examples: 23000
    download_size: 5488601
    dataset_size: 14410042
    homepage: https://github.com/Mcompetitions/M4-methods
  - config_name: m5
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: item_id
        dtype: string
      - name: target
        sequence: float32
      - name: dept_id
        dtype: string
      - name: cat_id
        dtype: string
      - name: store_id
        dtype: string
      - name: state_id
        dtype: string
    splits:
      - name: train
        num_bytes: 574062630
        num_examples: 30490
    download_size: 78063286
    dataset_size: 574062630
    homepage: https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules
  - config_name: mexico_city_bikes
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 618999406
        num_examples: 494
    download_size: 103206946
    dataset_size: 618999406
    homepage: https://ecobici.cdmx.gob.mx/en/open-data/
  - config_name: monash_australian_electricity
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 18484319
        num_examples: 5
    download_size: 16856156
    dataset_size: 18484319
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_car_parts
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 2232790
        num_examples: 2674
    download_size: 70278
    dataset_size: 2232790
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_cif_2016
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 115096
        num_examples: 72
    download_size: 70876
    dataset_size: 115096
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_covid_deaths
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 907326
        num_examples: 266
    download_size: 58957
    dataset_size: 907326
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_electricity_hourly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 135103443
        num_examples: 321
    download_size: 31139117
    dataset_size: 135103443
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_electricity_weekly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 807315
        num_examples: 321
    download_size: 333563
    dataset_size: 807315
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_fred_md
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 1248369
        num_examples: 107
    download_size: 412207
    dataset_size: 1248369
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_hospital
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: int64
    splits:
      - name: train
        num_examples: 767
    download_size: 117038
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_kdd_cup_2018
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: city
        dtype: string
      - name: station
        dtype: string
      - name: measurement
        dtype: string
    splits:
      - name: train
        num_bytes: 47091540
        num_examples: 270
    download_size: 8780105
    dataset_size: 47091540
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_london_smart_meters
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 2664567976
        num_examples: 5560
    download_size: 597389119
    dataset_size: 2664567976
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_m1_monthly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 907691
        num_examples: 617
    download_size: 244372
    dataset_size: 907691
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_m1_quarterly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 162961
        num_examples: 203
    download_size: 48439
    dataset_size: 162961
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_m1_yearly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 75679
        num_examples: 181
    download_size: 30754
    dataset_size: 75679
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_m3_monthly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 2708124
        num_examples: 1428
    download_size: 589699
    dataset_size: 2708124
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_m3_quarterly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 606428
        num_examples: 756
    download_size: 188543
    dataset_size: 606428
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_m3_yearly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 305359
        num_examples: 645
    download_size: 100184
    dataset_size: 305359
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_nn5_weekly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float32
    splits:
      - name: train
        num_examples: 111
    download_size: 64620
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_pedestrian_counts
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: int64
    splits:
      - name: train
        num_bytes: 50118790
        num_examples: 66
    download_size: 12377357
    dataset_size: 50118790
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_rideshare
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: source_location
        dtype: string
      - name: provider_name
        dtype: string
      - name: provider_service
        dtype: string
      - name: price_min
        sequence: float64
      - name: price_mean
        sequence: float64
      - name: price_max
        sequence: float64
      - name: distance_min
        sequence: float64
      - name: distance_mean
        sequence: float64
      - name: distance_max
        sequence: float64
      - name: surge_min
        sequence: float64
      - name: surge_mean
        sequence: float64
      - name: surge_max
        sequence: float64
      - name: api_calls
        sequence: float64
      - name: temp
        sequence: float64
      - name: rain
        sequence: float64
      - name: humidity
        sequence: float64
      - name: clouds
        sequence: float64
      - name: wind
        sequence: float64
    splits:
      - name: train
        num_bytes: 10819910
        num_examples: 156
    download_size: 781873
    dataset_size: 10819910
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_saugeenday
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: T1
        sequence: float64
    splits:
      - name: train
        num_bytes: 379875
        num_examples: 1
    download_size: 222678
    dataset_size: 379875
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_temperature_rain
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: t_mean
        sequence: float64
      - name: prcp_sum
        sequence: float64
      - name: t_max
        sequence: float64
      - name: t_min
        sequence: float64
      - name: fcst_0_dailypop
        sequence: float64
      - name: fcst_0_dailypop1
        sequence: float64
      - name: fcst_0_dailypop10
        sequence: float64
      - name: fcst_0_dailypop15
        sequence: float64
      - name: fcst_0_dailypop25
        sequence: float64
      - name: fcst_0_dailypop5
        sequence: float64
      - name: fcst_0_dailypop50
        sequence: float64
      - name: fcst_0_dailyprecip
        sequence: float64
      - name: fcst_0_dailyprecip10pct
        sequence: float64
      - name: fcst_0_dailyprecip25pct
        sequence: float64
      - name: fcst_0_dailyprecip50pct
        sequence: float64
      - name: fcst_0_dailyprecip75pct
        sequence: float64
      - name: fcst_1_dailypop
        sequence: float64
      - name: fcst_1_dailypop1
        sequence: float64
      - name: fcst_1_dailypop10
        sequence: float64
      - name: fcst_1_dailypop15
        sequence: float64
      - name: fcst_1_dailypop25
        sequence: float64
      - name: fcst_1_dailypop5
        sequence: float64
      - name: fcst_1_dailypop50
        sequence: float64
      - name: fcst_1_dailyprecip
        sequence: float64
      - name: fcst_1_dailyprecip10pct
        sequence: float64
      - name: fcst_1_dailyprecip25pct
        sequence: float64
      - name: fcst_1_dailyprecip50pct
        sequence: float64
      - name: fcst_1_dailyprecip75pct
        sequence: float64
      - name: fcst_2_dailypop
        sequence: float64
      - name: fcst_2_dailypop1
        sequence: float64
      - name: fcst_2_dailypop10
        sequence: float64
      - name: fcst_2_dailypop15
        sequence: float64
      - name: fcst_2_dailypop25
        sequence: float64
      - name: fcst_2_dailypop5
        sequence: float64
      - name: fcst_2_dailypop50
        sequence: float64
      - name: fcst_2_dailyprecip
        sequence: float64
      - name: fcst_2_dailyprecip10pct
        sequence: float64
      - name: fcst_2_dailyprecip25pct
        sequence: float64
      - name: fcst_2_dailyprecip50pct
        sequence: float64
      - name: fcst_2_dailyprecip75pct
        sequence: float64
      - name: fcst_3_dailypop
        sequence: float64
      - name: fcst_3_dailypop1
        sequence: float64
      - name: fcst_3_dailypop10
        sequence: float64
      - name: fcst_3_dailypop15
        sequence: float64
      - name: fcst_3_dailypop25
        sequence: float64
      - name: fcst_3_dailypop5
        sequence: float64
      - name: fcst_3_dailypop50
        sequence: float64
      - name: fcst_3_dailyprecip
        sequence: float64
      - name: fcst_3_dailyprecip10pct
        sequence: float64
      - name: fcst_3_dailyprecip25pct
        sequence: float64
      - name: fcst_3_dailyprecip50pct
        sequence: float64
      - name: fcst_3_dailyprecip75pct
        sequence: float64
      - name: fcst_4_dailypop
        sequence: float64
      - name: fcst_4_dailypop1
        sequence: float64
      - name: fcst_4_dailypop10
        sequence: float64
      - name: fcst_4_dailypop15
        sequence: float64
      - name: fcst_4_dailypop25
        sequence: float64
      - name: fcst_4_dailypop5
        sequence: float64
      - name: fcst_4_dailypop50
        sequence: float64
      - name: fcst_4_dailyprecip
        sequence: float64
      - name: fcst_4_dailyprecip10pct
        sequence: float64
      - name: fcst_4_dailyprecip25pct
        sequence: float64
      - name: fcst_4_dailyprecip50pct
        sequence: float64
      - name: fcst_4_dailyprecip75pct
        sequence: float64
      - name: fcst_5_dailypop
        sequence: float64
      - name: fcst_5_dailypop1
        sequence: float64
      - name: fcst_5_dailypop10
        sequence: float64
      - name: fcst_5_dailypop15
        sequence: float64
      - name: fcst_5_dailypop25
        sequence: float64
      - name: fcst_5_dailypop5
        sequence: float64
      - name: fcst_5_dailypop50
        sequence: float64
      - name: fcst_5_dailyprecip
        sequence: float64
      - name: fcst_5_dailyprecip10pct
        sequence: float64
      - name: fcst_5_dailyprecip25pct
        sequence: float64
      - name: fcst_5_dailyprecip50pct
        sequence: float64
      - name: fcst_5_dailyprecip75pct
        sequence: float64
    splits:
      - name: train
        num_bytes: 188598927
        num_examples: 422
    download_size: 44967856
    dataset_size: 188598927
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_tourism_monthly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 1755434
        num_examples: 366
    download_size: 334951
    dataset_size: 1755434
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_tourism_quarterly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 688817
        num_examples: 427
    download_size: 177407
    dataset_size: 688817
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_tourism_yearly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 213954
        num_examples: 518
    download_size: 81479
    dataset_size: 213954
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_traffic
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 241983226
        num_examples: 862
    download_size: 52748547
    dataset_size: 241983226
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: monash_weather
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: subset
        dtype: string
    splits:
      - name: train
        num_bytes: 688598539
        num_examples: 3010
    download_size: 133164027
    dataset_size: 688598539
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: nn5
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float32
    splits:
      - name: train
        num_examples: 111
    download_size: 203096
    homepage: >-
      http://www.neural-forecasting-competition.com/downloads/NN5/datasets/download.htm
  - config_name: solar
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: power_mw
        sequence: float64
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: capacity_mw
        dtype: float64
      - name: subset
        dtype: string
    splits:
      - name: train
        num_bytes: 8689093932
        num_examples: 5166
    download_size: 1507924920
    dataset_size: 8689093932
    homepage: https://www.nrel.gov/grid/solar-power-data.html
  - config_name: solar_1h
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: power_mw
        sequence: float64
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: capacity_mw
        dtype: float64
      - name: subset
        dtype: string
    splits:
      - name: train
        num_bytes: 724361772
        num_examples: 5166
    download_size: 124515417
    dataset_size: 724361772
    homepage: https://www.nrel.gov/grid/solar-power-data.html
  - config_name: taxi_1h
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: subset
        dtype: string
      - name: lat
        dtype: float64
      - name: lng
        dtype: float64
    splits:
      - name: train
        num_bytes: 28832500
        num_examples: 2428
    download_size: 2265297
    dataset_size: 28832500
    license: Apache 2.0
    homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
  - config_name: taxi_30min
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: subset
        dtype: string
      - name: lat
        dtype: float64
      - name: lng
        dtype: float64
    splits:
      - name: train
        num_bytes: 57560596
        num_examples: 2428
    download_size: 4541244
    dataset_size: 57560596
    license: Apache 2.0
    homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
  - config_name: training_corpus_kernel_synth_1m
    features:
      - name: target
        sequence: float64
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
    splits:
      - name: train
        num_examples: 1000000
    download_size: 8313239368
  - config_name: training_corpus_tsmixup_10m
    features:
      - name: target
        sequence: float64
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
    splits:
      - name: train
        num_examples: 10000000
    download_size: 82189589906
  - config_name: uber_tlc_daily
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: int64
    splits:
      - name: train
        num_examples: 262
    download_size: 84747
    homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response
  - config_name: uber_tlc_hourly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: int64
    splits:
      - name: train
        num_examples: 262
    download_size: 1878515
    homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response
  - config_name: ushcn_daily
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: state
        dtype: string
      - name: coop_id
        dtype: int64
      - name: PRCP
        sequence: float64
      - name: SNOW
        sequence: float64
      - name: SNWD
        sequence: float64
      - name: TMAX
        sequence: float64
      - name: TMIN
        sequence: float64
    splits:
      - name: train
        num_bytes: 2259905202
        num_examples: 1218
    download_size: 221089890
    dataset_size: 2259905202
    homepage: https://data.ess-dive.lbl.gov/portals/CDIAC
  - config_name: weatherbench_daily
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float32
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: level
        dtype: float64
      - name: subset
        dtype: string
    splits:
      - name: train
        num_bytes: 39510157312
        num_examples: 225280
    download_size: 18924392742
    dataset_size: 39510157312
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_10m_u_component_of_wind
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: float64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 2048
    download_size: 7292845757
    dataset_size: 8617472000
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_10m_v_component_of_wind
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: float64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 2048
    download_size: 7292352508
    dataset_size: 8617472000
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_2m_temperature
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: float64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 2048
    download_size: 7276396852
    dataset_size: 8617453568
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_geopotential
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 87305564613
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_potential_vorticity
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 92426240043
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_relative_humidity
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 94728788382
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_specific_humidity
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 85139896451
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_temperature
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 94081539079
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_toa_incident_solar_radiation
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: float64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 2048
    download_size: 6057953007
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_total_cloud_cover
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: float64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 2048
    download_size: 6628258398
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_total_precipitation
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: float64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 2048
    download_size: 6473160755
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_u_component_of_wind
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 94801498563
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_v_component_of_wind
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 94800557482
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_hourly_vorticity
    features:
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: target
        sequence: float32
      - name: level
        dtype: int64
      - name: timestamp
        sequence: timestamp[ms]
      - name: subset
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_examples: 26624
    download_size: 94720960560
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: weatherbench_weekly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float32
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: level
        dtype: float64
      - name: subset
        dtype: string
    splits:
      - name: train
        num_bytes: 5656029184
        num_examples: 225280
    download_size: 2243012083
    dataset_size: 5656029184
    license: MIT
    homepage: https://github.com/pangeo-data/WeatherBench
  - config_name: wiki_daily_100k
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
      - name: page_name
        dtype: string
    splits:
      - name: train
        num_bytes: 4389782678
        num_examples: 100000
    download_size: 592554033
    dataset_size: 4389782678
    license: CC0
    homepage: https://dumps.wikimedia.org/other/pageviews/readme.html
  - config_name: wind_farms_daily
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 1919187
        num_examples: 337
    download_size: 598834
    dataset_size: 1919187
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
  - config_name: wind_farms_hourly
    features:
      - name: id
        dtype: string
      - name: timestamp
        sequence: timestamp[ms]
      - name: target
        sequence: float64
    splits:
      - name: train
        num_bytes: 45917027
        num_examples: 337
    download_size: 12333116
    dataset_size: 45917027
    license: CC BY 4.0
    homepage: https://zenodo.org/communities/forecasting
configs:
  - config_name: dominick
    data_files:
      - split: train
        path: dominick/train-*
  - config_name: electricity_15min
    data_files:
      - split: train
        path: electricity_15min/train-*
  - config_name: ercot
    data_files:
      - split: train
        path: ercot/train-*
  - config_name: exchange_rate
    data_files:
      - split: train
        path: exchange_rate/train-*
  - config_name: m4_daily
    data_files:
      - split: train
        path: m4_daily/train-*
  - config_name: m4_hourly
    data_files:
      - split: train
        path: m4_hourly/train-*
  - config_name: m4_monthly
    data_files:
      - split: train
        path: m4_monthly/train-*
  - config_name: m4_quarterly
    data_files:
      - split: train
        path: m4_quarterly/train-*
  - config_name: m4_weekly
    data_files:
      - split: train
        path: m4_weekly/train-*
  - config_name: m4_yearly
    data_files:
      - split: train
        path: m4_yearly/train-*
  - config_name: m5
    data_files:
      - split: train
        path: m5/train-*
  - config_name: mexico_city_bikes
    data_files:
      - split: train
        path: mexico_city_bikes/train-*
  - config_name: monash_australian_electricity
    data_files:
      - split: train
        path: monash_australian_electricity/train-*
  - config_name: monash_car_parts
    data_files:
      - split: train
        path: monash_car_parts/train-*
  - config_name: monash_cif_2016
    data_files:
      - split: train
        path: monash_cif_2016/train-*
  - config_name: monash_covid_deaths
    data_files:
      - split: train
        path: monash_covid_deaths/train-*
  - config_name: monash_electricity_hourly
    data_files:
      - split: train
        path: monash_electricity_hourly/train-*
  - config_name: monash_electricity_weekly
    data_files:
      - split: train
        path: monash_electricity_weekly/train-*
  - config_name: monash_fred_md
    data_files:
      - split: train
        path: monash_fred_md/train-*
  - config_name: monash_hospital
    data_files:
      - split: train
        path: monash_hospital/train-*
  - config_name: monash_kdd_cup_2018
    data_files:
      - split: train
        path: monash_kdd_cup_2018/train-*
  - config_name: monash_london_smart_meters
    data_files:
      - split: train
        path: monash_london_smart_meters/train-*
  - config_name: monash_m1_monthly
    data_files:
      - split: train
        path: monash_m1_monthly/train-*
  - config_name: monash_m1_quarterly
    data_files:
      - split: train
        path: monash_m1_quarterly/train-*
  - config_name: monash_m1_yearly
    data_files:
      - split: train
        path: monash_m1_yearly/train-*
  - config_name: monash_m3_monthly
    data_files:
      - split: train
        path: monash_m3_monthly/train-*
  - config_name: monash_m3_quarterly
    data_files:
      - split: train
        path: monash_m3_quarterly/train-*
  - config_name: monash_m3_yearly
    data_files:
      - split: train
        path: monash_m3_yearly/train-*
  - config_name: monash_nn5_weekly
    data_files:
      - split: train
        path: monash_nn5_weekly/train-*
  - config_name: monash_pedestrian_counts
    data_files:
      - split: train
        path: monash_pedestrian_counts/train-*
  - config_name: monash_rideshare
    data_files:
      - split: train
        path: monash_rideshare/train-*
  - config_name: monash_saugeenday
    data_files:
      - split: train
        path: monash_saugeenday/train-*
  - config_name: monash_temperature_rain
    data_files:
      - split: train
        path: monash_temperature_rain/train-*
  - config_name: monash_tourism_monthly
    data_files:
      - split: train
        path: monash_tourism_monthly/train-*
  - config_name: monash_tourism_quarterly
    data_files:
      - split: train
        path: monash_tourism_quarterly/train-*
  - config_name: monash_tourism_yearly
    data_files:
      - split: train
        path: monash_tourism_yearly/train-*
  - config_name: monash_traffic
    data_files:
      - split: train
        path: monash_traffic/train-*
  - config_name: monash_weather
    data_files:
      - split: train
        path: monash_weather/train-*
  - config_name: nn5
    data_files:
      - split: train
        path: nn5/train-*
  - config_name: solar
    data_files:
      - split: train
        path: solar/train-*
  - config_name: solar_1h
    data_files:
      - split: train
        path: solar_1h/train-*
  - config_name: taxi_1h
    data_files:
      - split: train
        path: taxi_1h/train-*
  - config_name: taxi_30min
    data_files:
      - split: train
        path: taxi_30min/train-*
  - config_name: training_corpus_kernel_synth_1m
    data_files:
      - split: train
        path: training_corpus/kernel_synth_1m/train-*
  - config_name: training_corpus_tsmixup_10m
    data_files:
      - split: train
        path: training_corpus/tsmixup_10m/train-*
  - config_name: uber_tlc_daily
    data_files:
      - split: train
        path: uber_tlc_daily/train-*
  - config_name: uber_tlc_hourly
    data_files:
      - split: train
        path: uber_tlc_hourly/train-*
  - config_name: ushcn_daily
    data_files:
      - split: train
        path: ushcn_daily/train-*
  - config_name: weatherbench_daily
    data_files:
      - split: train
        path: weatherbench_daily/train-*
  - config_name: weatherbench_hourly_10m_u_component_of_wind
    data_files:
      - split: train
        path: weatherbench_hourly/10m_u_component_of_wind/train-*
  - config_name: weatherbench_hourly_10m_v_component_of_wind
    data_files:
      - split: train
        path: weatherbench_hourly/10m_v_component_of_wind/train-*
  - config_name: weatherbench_hourly_2m_temperature
    data_files:
      - split: train
        path: weatherbench_hourly/2m_temperature/train-*
  - config_name: weatherbench_hourly_geopotential
    data_files:
      - split: train
        path: weatherbench_hourly/geopotential/train-*
  - config_name: weatherbench_hourly_potential_vorticity
    data_files:
      - split: train
        path: weatherbench_hourly/potential_vorticity/train-*
  - config_name: weatherbench_hourly_relative_humidity
    data_files:
      - split: train
        path: weatherbench_hourly/relative_humidity/train-*
  - config_name: weatherbench_hourly_specific_humidity
    data_files:
      - split: train
        path: weatherbench_hourly/specific_humidity/train-*
  - config_name: weatherbench_hourly_temperature
    data_files:
      - split: train
        path: weatherbench_hourly/temperature/train-*
  - config_name: weatherbench_hourly_toa_incident_solar_radiation
    data_files:
      - split: train
        path: weatherbench_hourly/toa_incident_solar_radiation/train-*
  - config_name: weatherbench_hourly_total_cloud_cover
    data_files:
      - split: train
        path: weatherbench_hourly/total_cloud_cover/train-*
  - config_name: weatherbench_hourly_total_precipitation
    data_files:
      - split: train
        path: weatherbench_hourly/total_precipitation/train-*
  - config_name: weatherbench_hourly_u_component_of_wind
    data_files:
      - split: train
        path: weatherbench_hourly/u_component_of_wind/train-*
  - config_name: weatherbench_hourly_v_component_of_wind
    data_files:
      - split: train
        path: weatherbench_hourly/v_component_of_wind/train-*
  - config_name: weatherbench_hourly_vorticity
    data_files:
      - split: train
        path: weatherbench_hourly/vorticity/train-*
  - config_name: weatherbench_weekly
    data_files:
      - split: train
        path: weatherbench_weekly/train-*
  - config_name: wiki_daily_100k
    data_files:
      - split: train
        path: wiki_daily_100k/train-*
  - config_name: wind_farms_daily
    data_files:
      - split: train
        path: wind_farms_daily/train-*
  - config_name: wind_farms_hourly
    data_files:
      - split: train
        path: wind_farms_hourly/train-*

Chronos datasets

Time series datasets used for training and evaluation of the Chronos forecasting models.

Note that some Chronos datasets (ETTh, ETTm, brazilian_cities_temperature and spanish_energy_and_weather) that rely on a custom builder script are available in the companion repo autogluon/chronos_datasets_extra.

See the paper for more information.

Data format and usage

All datasets satisfy the following high-level schema:

  • Each dataset row corresponds to a single (univariate or multivariate) time series.
  • There exists one column with name id and type string that contains the unique identifier of each time series.
  • There exists one column of type Sequence with dtype timestamp[ms]. This column contains the timestamps of the observations. Timestamps are guaranteed to have a regular frequency that can be obtained with pandas.infer_freq.
  • There exists at least one column of type Sequence with numeric (float, double, or int) dtype. These columns can be interpreted as target time series.
  • For each row, all columns of type Sequence have same length.
  • Remaining columns of types other than Sequence (e.g., string or float) can be interpreted as static covariates.

Datasets can be loaded using the 🤗 datasets library

import datasets

ds = datasets.load_dataset("autogluon/chronos_datasets", "m4_daily", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays

NOTE: The train split of all datasets contains the full time series and has no relation to the train/test split used in the Chronos paper.

Example entry in the m4_daily dataset

>>> ds[0]
{'id': 'T000000',
 'timestamp': array(['1994-03-01T12:00:00.000', '1994-03-02T12:00:00.000',
        '1994-03-03T12:00:00.000', ..., '1996-12-12T12:00:00.000',
        '1996-12-13T12:00:00.000', '1996-12-14T12:00:00.000'],
       dtype='datetime64[ms]'),
 'target': array([1017.1, 1019.3, 1017. , ..., 2071.4, 2083.8, 2080.6], dtype=float32),
 'category': 'Macro'}

Converting to pandas

We can easily convert data in such format to a long format data frame

def to_pandas(ds: datasets.Dataset) -> "pd.DataFrame":
    """Convert dataset to long data frame format."""
    sequence_columns = [col for col in ds.features if isinstance(ds.features[col], datasets.Sequence)]
    return ds.to_pandas().explode(sequence_columns).infer_objects()

Example output

>>> print(to_pandas(ds).head())
        id           timestamp  target category
0  T000000 1994-03-01 12:00:00  1017.1    Macro
1  T000000 1994-03-02 12:00:00  1019.3    Macro
2  T000000 1994-03-03 12:00:00  1017.0    Macro
3  T000000 1994-03-04 12:00:00  1019.2    Macro
4  T000000 1994-03-05 12:00:00  1018.7    Macro

Dealing with large datasets

Note that some datasets, such as subsets of WeatherBench, are extremely large (~100GB). To work with them efficiently, we recommend either loading them from disk (files will be downloaded to disk, but won't be all loaded into memory)

ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_daily", keep_in_memory=False, split="train")

or, for the largest datasets like weatherbench_hourly_temperature, reading them in streaming format (chunks will be downloaded one at a time)

ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_hourly_temperature", streaming=True, split="train")

Chronos training corpus with TSMixup & KernelSynth

The training corpus used for training the Chronos models can be loaded via the configs training_corpus_tsmixup_10m (10M TSMixup augmentations of real-world data) and training_corpus_kernel_synth_1m (1M synthetic time series generated with KernelSynth), e.g.,

ds = datasets.load_dataset("autogluon/chronos_datasets", "training_corpus_tsmixup_10m", streaming=True, split="train")

Note that since data in the training corpus was obtained by combining various synthetic & real-world time series, the timestamps contain dummy values that have no connection to the original data.

License

Different datasets available in this collection are distributed under different open source licenses. Please see ds.info.license and ds.info.homepage for each individual dataset.

Citation

If you find these datasets useful for your research, please consider citing the associated paper:

@article{ansari2024chronos,
  author  = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
  title   = {Chronos: Learning the Language of Time Series},
  journal = {arXiv preprint arXiv:2403.07815},
  year    = {2024}
}