|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import os |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{kjartansson-etal-sltu2018, |
|
title = {{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}}, |
|
author = {Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha}, |
|
booktitle = {Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU)}, |
|
year = {2018}, |
|
address = {Gurugram, India}, |
|
month = aug, |
|
pages = {52--55}, |
|
URL = {http://dx.doi.org/10.21437/SLTU.2018-11}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "jv_id_asr" |
|
|
|
_DESCRIPTION = """\ |
|
This data set contains transcribed audio data for Javanese. The data set consists of wave files, and a TSV file. |
|
The file utt_spk_text.tsv contains a FileID, UserID and the transcription of audio in the file. |
|
The data set has been manually quality checked, but there might still be errors. |
|
This dataset was collected by Google in collaboration with Reykjavik University and Universitas Gadjah Mada in Indonesia. |
|
""" |
|
|
|
_HOMEPAGE = "http://openslr.org/35/" |
|
_LANGUAGES = ["jav"] |
|
_LOCAL = False |
|
|
|
_LICENSE = "Attribution-ShareAlike 4.0 International" |
|
|
|
_URLs = { |
|
"jv_id_asr_train": "https://drive.google.com/file/d/1-9hocMVgjPYD02VX0q3H6Yp51vq9-fD7/view?usp=sharing", |
|
"jv_id_asr_dev": "https://drive.google.com/file/d/1-Lj-dEE7xpAx_DsLDAipV-I-AVPB68lI/view?usp=sharing", |
|
"jv_id_asr_test": "https://drive.google.com/file/d/1-9hbOozqvvOM_8he0pEG6aht2VEZcsNb/view?usp=sharing", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
def download_from_gdrive(url, output_dir): |
|
"""Download a file from Google Drive and save it to the specified directory.""" |
|
file_id = url.split("/d/")[-1].split("/")[0] |
|
gdrive_url = f"https://drive.google.com/uc?id={file_id}" |
|
output_path = os.path.join(output_dir, f"{file_id}.zip") |
|
gdown.download(gdrive_url, output_path, quiet=False) |
|
return output_path |
|
|
|
|
|
class JvIdASR(datasets.GeneratorBasedBuilder): |
|
"""Javanese ASR training data set containing ~185K utterances.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="jv_id_asr_source", |
|
version=SOURCE_VERSION, |
|
description="jv_id_asr source schema", |
|
schema="source", |
|
subset_id="jv_id_asr", |
|
), |
|
SEACrowdConfig( |
|
name="jv_id_asr_seacrowd_sptext", |
|
version=SEACROWD_VERSION, |
|
description="jv_id_asr Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id="jv_id_asr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "jv_id_asr_source" |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
def get_dataset_path(url): |
|
if "drive.google.com" in url and url.strip(): |
|
return download_from_gdrive(url, dl_manager.download_dir) |
|
return dl_manager.download_and_extract(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": get_dataset_path(_URLs["jv_id_asr_train"], "train")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": get_dataset_path(_URLs["jv_id_asr_dev"], "dev")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": get_dataset_path(_URLs["jv_id_asr_test"], "test")}, |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _generate_examples(self, filepath: str): |
|
tsv_file = os.path.join(filepath, "asr_javanese", "utt_spk_text.tsv") |
|
with open(tsv_file, "r") as f: |
|
tsv_file = csv.reader(f, delimiter="\t") |
|
for line in tsv_file: |
|
audio_id, sp_id, text = line[0], line[1], line[2] |
|
wav_path = os.path.join(filepath, "asr_javanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id)) |
|
|
|
if os.path.exists(wav_path): |
|
if self.config.schema == "source": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": sp_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
} |
|
yield audio_id, ex |
|
elif self.config.schema == "seacrowd_sptext": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": sp_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": None, |
|
}, |
|
} |
|
yield audio_id, ex |
|
f.close() |