File size: 7,475 Bytes
8d76e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# -*- coding: utf-8 -*-
"""finetune-utility-scripts.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/14ZbhUPHtNt3EB0XunV_qN6OxWZHyU9wA
"""
!pip install openai
import base64
import requests
api_key = "sk-proj-uCiflA45fuchFdjkbNJ7T3BlbkFJF5WiEf2zHkttr7s9kijX"
prompt = """As an AI image tagging expert, please provide precise tags for
these images to enhance CLIP model's understanding of the content.
Employ succinct keywords or phrases, steering clear of elaborate
sentences and extraneous conjunctions. Prioritize the tags by relevance.
Your tags should capture key elements such as the main subject, setting,
artistic style, composition, image quality, color tone, filter, and camera
specifications, and any other tags crucial for the image. When tagging
photos of people, include specific details like gender, nationality,
attire, actions, pose, expressions, accessories, makeup, composition
type, age, etc. For other image categories, apply appropriate and
common descriptive tags as well. Recognize and tag any celebrities,
well-known landmark or IPs if clearly featured in the image.
Your tags should be accurate, non-duplicative, and within a
20-75 word count range. These tags will use for image re-creation,
so the closer the resemblance to the original image, the better the
tag quality. Tags should be comma-separated. Exceptional tagging will
be rewarded with $10 per image.
"""
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def create_openai_query(image_path):
base64_image = encode_image(image_path)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"max_tokens": 300
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
output = response.json()
print(output)
return output['choices'][0]['message']['content']
!rm -rf "/content/drive/MyDrive/Finetune-Dataset/Pexels_Caption"
import os
os.mkdir("/content/drive/MyDrive/Finetune-Dataset/Pexels_Caption")
import os
import time
# Function to process images in a folder, handling API throttling
def process_images_in_folder(input_folder, output_folder, resume_from=None):
os.makedirs(output_folder, exist_ok=True)
image_files = [f for f in os.listdir(input_folder) if os.path.isfile(os.path.join(input_folder, f))]
# Track processed images
processed_log = os.path.join(output_folder, "processed_log.txt")
processed_images = set()
# Read processed log if exists
if os.path.exists(processed_log):
with open(processed_log, 'r') as log_file:
processed_images = {line.strip() for line in log_file.readlines()}
try:
for image_file in image_files:
if resume_from and image_file <= resume_from:
continue # Skip images already processed
image_path = os.path.join(input_folder, image_file)
# Check if already processed
if image_file in processed_images:
print(f"Skipping {image_file} as it is already processed.")
continue
try:
processed_output = create_openai_query(image_path)
except Exception as e:
print(f"Error processing {image_file}: {str(e)}")
processed_output = "" # Stop processing further on error
output_file_path = os.path.join(output_folder, f"{os.path.splitext(image_file)[0]}.txt")
with open(output_file_path, 'w') as f:
f.write(processed_output)
# Log processed image
with open(processed_log, 'a') as log_file:
log_file.write(f"{image_file}\n")
print(f"Processed {image_file} and saved result to {output_file_path}")
except Exception as e:
print(f"Error occurred: {str(e)}. Resuming might not be possible.")
return
if __name__ == "__main__":
input_folder = "/content/drive/MyDrive/inference-images/inference-images/caimera"
output_folder = "/content/drive/MyDrive/inference-images/caimera_captions"
# Replace with the last successfully processed image filename (without extension) to resume from that point
resume_from = None # Example: "image_003"
process_images_in_folder(input_folder, output_folder, resume_from)
import os
import shutil
def move_json_files(source_folder, destination_folder):
# Ensure destination folder exists, create if not
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# Iterate through files in source folder
for file_name in os.listdir(source_folder):
if file_name.endswith('.png'):
source_file = os.path.join(source_folder, file_name)
destination_file = os.path.join(destination_folder, file_name)
try:
shutil.move(source_file, destination_file)
print(f"Moved {file_name} to {destination_folder}")
except Exception as e:
print(f"Failed to move {file_name}: {e}")
# Example usage:
source_folder = "/content/drive/MyDrive/inference-images/inference-images/1683/saved" # Replace with your source folder path
destination_folder = "/content/drive/MyDrive/inference-images/inference-images/caimera" # Replace with your destination folder path
move_json_files(source_folder, destination_folder)
os.mkdir('/content/drive/MyDrive/kohya_finetune_data')
import os
import shutil
def merge_folders(folder_paths, destination_folder):
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
for folder_path in folder_paths:
for filename in os.listdir(folder_path):
source_file = os.path.join(folder_path, filename)
destination_file = os.path.join(destination_folder, filename)
if os.path.exists(destination_file):
base, extension = os.path.splitext(filename)
count = 1
while os.path.exists(os.path.join(destination_folder, f"{base}_{count}{extension}")):
count += 1
destination_file = os.path.join(destination_folder, f"{base}_{count}{extension}")
shutil.copy2(source_file, destination_file)
print(f"Copied {source_file} to {destination_file}")
if __name__ == "__main__":
# Example usage
folder1 = '/content/drive/MyDrive/inference-images/caimera_captions'
folder2 = '/content/drive/MyDrive/inference-images/inference-images/caimera'
folder3 = '/content/drive/MyDrive/Finetune-Dataset/Burst'
folder4 = '/content/drive/MyDrive/Finetune-Dataset/Burst_Caption'
folder5 = '/content/drive/MyDrive/Finetune-Dataset/Pexels'
folder6 = '/content/drive/MyDrive/Finetune-Dataset/Pexels_Caption'
destination = '/content/drive/MyDrive/kohya_finetune_data'
folders_to_merge = [folder1, folder2, folder3, folder4, folder5, folder6]
merge_folders(folders_to_merge, destination)
|