import os | |
from collections import Counter | |
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
# Streamlit app title | |
# st.title('Interactive Tag Frequency Visualization') | |
# File uploader to select folder | |
folder_path = "/home/caimera-prod/eye_tagged_data" | |
if folder_path: | |
# Initialize a Counter to count tag frequency | |
tag_counter = Counter() | |
# Iterate through each .txt file in the folder | |
for file_name in os.listdir(folder_path): | |
if file_name.endswith('.txt'): | |
file_path = os.path.join(folder_path, file_name) | |
with open(file_path, 'r') as file: | |
tags = file.read().strip().split(',') | |
# Clean and count each tag | |
tags = [tag.strip().lower() for tag in tags] | |
tag_counter.update(tags) | |
# Convert the Counter to a DataFrame for better display | |
tag_data = pd.DataFrame(tag_counter.items(), columns=['Tag', 'Count']) | |
tag_data = tag_data.sort_values(by='Count', ascending=False).reset_index(drop=True) | |
# Display the DataFrame as a table in Streamlit | |
st.subheader('Tag Frequency Table') | |
st.dataframe(tag_data) | |
# Create an interactive bar chart using Plotly | |
st.subheader('Interactive Tag Frequency Bar Chart') | |
fig = px.bar(tag_data, x='Tag', y='Count', title='Tag Frequency', labels={'Count': 'Frequency'}, height=600) | |
fig.update_layout(xaxis_title='Tags', yaxis_title='Frequency') | |
st.plotly_chart(fig) | |