Anustup commited on
Commit
4b0a67f
·
verified ·
1 Parent(s): 46769ff

Upload 13 files

Browse files
Files changed (13) hide show
  1. a.py +63 -0
  2. b.py +66 -0
  3. clean_tag.py +37 -0
  4. gpt_caption.py +134 -0
  5. gpt_eye_tagger.py +117 -0
  6. python_script.py +17 -0
  7. st.py +45 -0
  8. st_eye_plot.py +61 -0
  9. st_tag_clean.py +44 -0
  10. stream_lit_plotly.py +39 -0
  11. stream_new.py +65 -0
  12. streamlit.py +33 -0
  13. transfer.py +28 -0
a.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from PIL import Image
4
+ from collections import Counter
5
+
6
+ # Function to list files with given extensions
7
+ def list_files(folder_path, extensions):
8
+ files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
9
+ return [f for f in files if f.split('.')[-1] in extensions]
10
+
11
+ # Function to get tag frequencies from text files
12
+ def get_tag_frequencies(text_files):
13
+ tag_counter = Counter()
14
+ for text_file in text_files:
15
+ with open(text_file, 'r') as file:
16
+ tags = file.read().split()
17
+ tag_counter.update(tags)
18
+ return tag_counter
19
+
20
+ # Set up Streamlit app
21
+ st.title("Display Images and Corresponding Text Files")
22
+
23
+ # Define the folder path
24
+ folder_path = "/home/caimera-prod/kohya_new_dataset"
25
+
26
+ # List of allowed image and text extensions
27
+ image_extensions = ['jpg', 'jpeg', 'png']
28
+ text_extensions = ['txt']
29
+
30
+ # Get the list of image and text files
31
+ files = list_files(folder_path, image_extensions + text_extensions)
32
+
33
+ # Filter files into images and texts
34
+ images = [f for f in files if f.split('.')[-1] in image_extensions]
35
+ texts = [f for f in files if f.split('.')[-1] in text_extensions]
36
+
37
+ # Create a dictionary to map image files to their corresponding text files
38
+ file_map = {}
39
+ for image in images:
40
+ base_name = os.path.splitext(image)[0]
41
+ corresponding_text = base_name + '.txt'
42
+ if corresponding_text in texts:
43
+ file_map[image] = corresponding_text
44
+
45
+ # Get tag frequencies
46
+ text_files_paths = [os.path.join(folder_path, text) for text in texts]
47
+ tag_frequencies = get_tag_frequencies(text_files_paths)
48
+
49
+ # Display tag frequencies
50
+ st.subheader("Tag Frequencies")
51
+ for tag, freq in tag_frequencies.most_common():
52
+ st.write(f"{tag}: {freq}")
53
+
54
+ # Display images and text files side by side
55
+ for image_file, text_file in file_map.items():
56
+ col1, col2 = st.columns(2)
57
+
58
+ with col1:
59
+ st.image(os.path.join(folder_path, image_file), caption=image_file, use_column_width=True)
60
+
61
+ with col2:
62
+ with open(os.path.join(folder_path, text_file), 'r') as file:
63
+ st.text_area(text_file, file.read(), height=300)
b.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from PIL import Image
4
+ from collections import Counter
5
+ import pandas as pd
6
+ # Function to list files with given extensions
7
+ def list_files(folder_path, extensions):
8
+ files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
9
+ return [f for f in files if f.split('.')[-1] in extensions]
10
+
11
+ # Function to get tag frequencies from text files
12
+ def get_tag_frequencies(text_files):
13
+ tag_counter = Counter()
14
+ for text_file in text_files:
15
+ with open(text_file, 'r') as file:
16
+ tags = file.read().split()
17
+ tag_counter.update(tags)
18
+ return tag_counter
19
+
20
+ # Set up Streamlit app
21
+ st.title("Display Images and Corresponding Text Files")
22
+
23
+ # Define the folder path
24
+ folder_path = "/home/caimera-prod/kohya_new_dataset"
25
+
26
+ # List of allowed image and text extensions
27
+ image_extensions = ['jpg', 'jpeg', 'png']
28
+ text_extensions = ['txt']
29
+
30
+ # Get the list of image and text files
31
+ files = list_files(folder_path, image_extensions + text_extensions)
32
+
33
+ # Filter files into images and texts
34
+ images = [f for f in files if f.split('.')[-1] in image_extensions]
35
+ texts = [f for f in files if f.split('.')[-1] in text_extensions]
36
+
37
+ # Create a dictionary to map image files to their corresponding text files
38
+ file_map = {}
39
+ for image in images:
40
+ base_name = os.path.splitext(image)[0]
41
+ corresponding_text = base_name + '.txt'
42
+ if corresponding_text in texts:
43
+ file_map[image] = corresponding_text
44
+
45
+ # Get tag frequencies
46
+ text_files_paths = [os.path.join(folder_path, text) for text in texts]
47
+ tag_frequencies = get_tag_frequencies(text_files_paths)
48
+
49
+ # Prepare tag frequencies for display
50
+ tag_frequencies_data = [{'Tag': tag, 'Frequency': freq} for tag, freq in tag_frequencies.items()]
51
+ tag_frequencies_df = pd.DataFrame(tag_frequencies_data)
52
+
53
+ # Display tag frequencies in a table
54
+ st.subheader("Tag Frequencies")
55
+ st.table(tag_frequencies_df)
56
+
57
+ # Display images and text files side by side
58
+ for image_file, text_file in file_map.items():
59
+ col1, col2 = st.columns(2)
60
+
61
+ with col1:
62
+ st.image(os.path.join(folder_path, image_file), caption=image_file, use_column_width=True)
63
+
64
+ with col2:
65
+ with open(os.path.join(folder_path, text_file), 'r') as file:
66
+ st.text_area(text_file, file.read(), height=300)
clean_tag.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ def clean_gym_keywords(text):
4
+ # Split the text by commas
5
+ parts = [part.strip() for part in text.split(',')]
6
+
7
+ # Remove duplicate "gym" keywords
8
+ unique_parts = []
9
+ seen = False
10
+ for part in parts:
11
+ if part.lower() == 'gym':
12
+ if not seen:
13
+ unique_parts.append(part)
14
+ seen = True
15
+ else:
16
+ unique_parts.append(part)
17
+ seen = False
18
+
19
+ # Join the parts back into a single string
20
+ cleaned_text = ', '.join(unique_parts)
21
+ return cleaned_text
22
+
23
+ def process_files(folder_path):
24
+ for filename in os.listdir(folder_path):
25
+ if filename.endswith('.txt'):
26
+ file_path = os.path.join(folder_path, filename)
27
+ with open(file_path, 'r', encoding='utf-8') as file:
28
+ content = file.read()
29
+
30
+ cleaned_content = clean_gym_keywords(content)
31
+
32
+ with open(file_path, 'w', encoding='utf-8') as file:
33
+ file.write(cleaned_content)
34
+
35
+ # Specify the path to the folder containing your text files
36
+ folder_path = '/home/caimera-prod/kohya_new_dataset'
37
+ process_files(folder_path)
gpt_caption.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import base64
4
+ import requests
5
+ import os
6
+
7
+ api_key = "sk-proj-uCiflA45fuchFdjkbNJ7T3BlbkFJF5WiEf2zHkttr7s9kijX"
8
+ prompt = """As an AI image tagging expert, please provide precise tags for
9
+ these images to enhance CLIP model's understanding of the content.
10
+ Employ succinct keywords or phrases, steering clear of elaborate
11
+ sentences and extraneous conjunctions. Prioritize the tags by relevance.
12
+ Your tags should capture key elements such as the main subject, setting,
13
+ artistic style, composition, image quality, color tone, filter, and camera
14
+ specifications, and any other tags crucial for the image. When tagging
15
+ photos of people, include specific details like gender, nationality,
16
+ attire, actions, pose, expressions, accessories, makeup, composition
17
+ type, age, etc. For other image categories, apply appropriate and
18
+ common descriptive tags as well. Recognize and tag any celebrities,
19
+ well-known landmark or IPs if clearly featured in the image.
20
+ Your tags should be accurate, non-duplicative, and within a
21
+ 20-75 word count range. These tags will use for image re-creation,
22
+ so the closer the resemblance to the original image, the better the
23
+ tag quality. Tags should be comma-separated. Exceptional tagging will
24
+ be rewarded with $10 per image.
25
+ """
26
+ rule_prompt = """
27
+ Follow this rules while captioning if the images have models:\n
28
+ 1. For gender identification utilze Male or Female, e.g : young female \n
29
+ 2. You can add the ethinicity to the gender tag, e.g : young Indian female, african male \n
30
+ 3. Specify the body composition or model composition always. If the body composition have any
31
+ discripencies be more specific.\n
32
+ 4. If the image have a specific activity state the particular activity e.g: yoga, swimming, gym
33
+ 5. Do not add objects which are not present in the Image.\n
34
+ """
35
+ def encode_image(image_path):
36
+ with open(image_path, "rb") as image_file:
37
+ return base64.b64encode(image_file.read()).decode('utf-8')
38
+
39
+ def create_openai_query(image_path):
40
+ base64_image = encode_image(image_path)
41
+ headers = {
42
+ "Content-Type": "application/json",
43
+ "Authorization": f"Bearer {api_key}"
44
+ }
45
+ payload = {
46
+ "model": "gpt-4o",
47
+ "messages": [
48
+ {
49
+ "role": "user",
50
+ "content": [
51
+ {
52
+ "type": "text",
53
+ "text": (prompt+rule_prompt)
54
+ },
55
+ {
56
+ "type": "image_url",
57
+ "image_url": {
58
+ "url": f"data:image/jpeg;base64,{base64_image}"
59
+ }
60
+ }
61
+ ]
62
+ }
63
+ ],
64
+ "max_tokens": 300
65
+ }
66
+
67
+ response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
68
+ output = response.json()
69
+ print(output)
70
+ return output['choices'][0]['message']['content']
71
+
72
+
73
+ def process_images_in_folder(input_folder, output_folder, resume_from=None):
74
+ os.makedirs(output_folder, exist_ok=True)
75
+
76
+ image_files = [
77
+ f for f in os.listdir(input_folder)
78
+ if os.path.isfile(os.path.join(input_folder, f)) and not (f.endswith('.txt') or f.endswith('.npz'))]
79
+
80
+ # Track processed images
81
+ processed_log = os.path.join(output_folder, "processed_log.txt")
82
+ processed_images = set()
83
+
84
+ # Read processed log if it exists
85
+ if os.path.exists(processed_log):
86
+ with open(processed_log, 'r') as log_file:
87
+ processed_images = {line.strip() for line in log_file.readlines()}
88
+
89
+ try:
90
+ for image_file in image_files:
91
+ if resume_from and image_file <= resume_from:
92
+ continue # Skip images already processed
93
+
94
+ image_path = os.path.join(input_folder, image_file)
95
+
96
+ # Check if already processed
97
+ if image_file in processed_images:
98
+ print(f"Skipping {image_file} as it is already processed.")
99
+ continue
100
+
101
+ try:
102
+ # Simulating the processing function (replace with actual call)
103
+ processed_output = create_openai_query(image_path)
104
+ except Exception as e:
105
+ print(f"Error processing {image_file}: {str(e)}")
106
+ processed_output = "" # Stop processing further on error
107
+
108
+ # Save processed output to a text file
109
+ output_text_file_path = os.path.join(output_folder, f"{os.path.splitext(image_file)[0]}.txt")
110
+ with open(output_text_file_path, 'w') as f:
111
+ f.write(processed_output)
112
+
113
+ # Copy the image to the output folder
114
+ # output_image_path = os.path.join(output_folder, image_file)
115
+ # shutil.copy(image_path, output_image_path)
116
+
117
+ # Log processed image
118
+ with open(processed_log, 'a') as log_file:
119
+ log_file.write(f"{image_file}\n")
120
+
121
+ print(f"Processed {image_file} and saved result to {output_text_file_path}")
122
+
123
+ except Exception as e:
124
+ print(f"Error occurred: {str(e)}. Resuming might not be possible.")
125
+ return
126
+
127
+ if __name__ == "__main__":
128
+ input_folder = "/home/caimera-prod/Paid-data"
129
+ output_folder = "/home/caimera-prod/Paid-data"
130
+
131
+ # Replace with the last successfully processed image filename (without extension) to resume from that point
132
+ resume_from = None # Example: "image_003"
133
+
134
+ process_images_in_folder(input_folder, output_folder, resume_from)
gpt_eye_tagger.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import base64
4
+ import requests
5
+ import os
6
+
7
+ api_key = "sk-proj-uCiflA45fuchFdjkbNJ7T3BlbkFJF5WiEf2zHkttr7s9kijX"
8
+ prompt = """As an AI image tagging expert, please provide one precise tag of the eye for
9
+ these images to enhance CLIP model's understanding of the content.
10
+ Employ succinct keywords or phrases, steering clear of elaborate
11
+ sentences and extraneous conjunctions.
12
+ """
13
+ rule_prompt = """
14
+ Follow this rules while captioning the eye:
15
+ If eye is not visible then tag the pose
16
+ If eye is visible tag it in details along with ethnicity for example round nepali woman eye
17
+ """
18
+ def encode_image(image_path):
19
+ with open(image_path, "rb") as image_file:
20
+ return base64.b64encode(image_file.read()).decode('utf-8')
21
+
22
+ def create_openai_query(image_path):
23
+ base64_image = encode_image(image_path)
24
+ headers = {
25
+ "Content-Type": "application/json",
26
+ "Authorization": f"Bearer {api_key}"
27
+ }
28
+ payload = {
29
+ "model": "gpt-4o",
30
+ "messages": [
31
+ {
32
+ "role": "user",
33
+ "content": [
34
+ {
35
+ "type": "text",
36
+ "text": (prompt+rule_prompt)
37
+ },
38
+ {
39
+ "type": "image_url",
40
+ "image_url": {
41
+ "url": f"data:image/jpeg;base64,{base64_image}"
42
+ }
43
+ }
44
+ ]
45
+ }
46
+ ],
47
+ "max_tokens": 300
48
+ }
49
+
50
+ response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
51
+ output = response.json()
52
+ print(output)
53
+ return output['choices'][0]['message']['content']
54
+
55
+
56
+ def process_images_in_folder(input_folder, output_folder, resume_from=None):
57
+ os.makedirs(output_folder, exist_ok=True)
58
+
59
+ image_files = [
60
+ f for f in os.listdir(input_folder)
61
+ if os.path.isfile(os.path.join(input_folder, f)) and not (f.endswith('.txt') or f.endswith('.npz'))]
62
+
63
+ # Track processed images
64
+ processed_log = os.path.join(output_folder, "processed_log.txt")
65
+ processed_images = set()
66
+
67
+ # Read processed log if it exists
68
+ if os.path.exists(processed_log):
69
+ with open(processed_log, 'r') as log_file:
70
+ processed_images = {line.strip() for line in log_file.readlines()}
71
+
72
+ try:
73
+ for image_file in image_files:
74
+ if resume_from and image_file <= resume_from:
75
+ continue # Skip images already processed
76
+
77
+ image_path = os.path.join(input_folder, image_file)
78
+
79
+ # Check if already processed
80
+ if image_file in processed_images:
81
+ print(f"Skipping {image_file} as it is already processed.")
82
+ continue
83
+
84
+ try:
85
+ # Simulating the processing function (replace with actual call)
86
+ processed_output = create_openai_query(image_path)
87
+ except Exception as e:
88
+ print(f"Error processing {image_file}: {str(e)}")
89
+ processed_output = "" # Stop processing further on error
90
+
91
+ # Save processed output to a text file
92
+ output_text_file_path = os.path.join(output_folder, f"{os.path.splitext(image_file)[0]}.txt")
93
+ with open(output_text_file_path, 'w') as f:
94
+ f.write(processed_output)
95
+
96
+ # Copy the image to the output folder
97
+ # output_image_path = os.path.join(output_folder, image_file)
98
+ # shutil.copy(image_path, output_image_path)
99
+
100
+ # Log processed image
101
+ with open(processed_log, 'a') as log_file:
102
+ log_file.write(f"{image_file}\n")
103
+
104
+ print(f"Processed {image_file} and saved result to {output_text_file_path}")
105
+
106
+ except Exception as e:
107
+ print(f"Error occurred: {str(e)}. Resuming might not be possible.")
108
+ return
109
+
110
+ if __name__ == "__main__":
111
+ input_folder = "/home/caimera-prod/eye_tagged_data"
112
+ output_folder = "/home/caimera-prod/eye_tagged_data"
113
+
114
+ # Replace with the last successfully processed image filename (without extension) to resume from that point
115
+ resume_from = None # Example: "image_003"
116
+
117
+ process_images_in_folder(input_folder, output_folder, resume_from)
python_script.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+
5
+ image_folder = "masked_loss_training_data/images"
6
+ mask_folder = "masked_loss_training_data/conditioning"
7
+
8
+ image_files = os.listdir(image_folder)
9
+ jpg_files = [f for f in image_files if f.endswith('.jpg')]
10
+
11
+ for file_name in jpg_files:
12
+ img = cv2.imread(os.path.join(image_folder, file_name), cv2.IMREAD_GRAYSCALE)
13
+ _, bw_mask = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
14
+ output_file_path = os.path.join(mask_folder, os.path.splitext(file_name)[0] + '.png')
15
+ cv2.imwrite(output_file_path, bw_mask)
16
+
17
+
st.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from PIL import Image
4
+
5
+ # Function to list files with given extensions
6
+ def list_files(folder_path, extensions):
7
+ files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
8
+ return [f for f in files if f.split('.')[-1] in extensions]
9
+
10
+ # Set up Streamlit app
11
+ st.title("Display Images and Corresponding Text Files")
12
+
13
+ # Define the folder path
14
+ folder_path = "/home/caimera-prod/kohya_new_dataset"
15
+
16
+ # List of allowed image and text extensions
17
+ image_extensions = ['jpg', 'jpeg', 'png']
18
+ text_extensions = ['txt']
19
+
20
+ # Get the list of image and text files
21
+ files = list_files(folder_path, image_extensions + text_extensions)
22
+
23
+ # Filter files into images and texts
24
+ images = [f for f in files if f.split('.')[-1] in image_extensions]
25
+ texts = [f for f in files if f.split('.')[-1] in text_extensions]
26
+
27
+ # Create a dictionary to map image files to their corresponding text files
28
+ file_map = {}
29
+ for image in images:
30
+ base_name = os.path.splitext(image)[0]
31
+ corresponding_text = base_name + '.txt'
32
+ if corresponding_text in texts:
33
+ file_map[image] = corresponding_text
34
+
35
+ # Display images and text files side by side
36
+ for image_file, text_file in file_map.items():
37
+ col1, col2 = st.columns(2)
38
+
39
+ with col1:
40
+ st.image(os.path.join(folder_path, image_file), caption=image_file, use_column_width=True)
41
+
42
+ with col2:
43
+ with open(os.path.join(folder_path, text_file), 'r') as file:
44
+ st.text_area(text_file, file.read(), height=300)
45
+
st_eye_plot.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections import Counter
3
+ import streamlit as st
4
+ import pandas as pd
5
+ import plotly.express as px
6
+ from PIL import Image
7
+
8
+ # Streamlit app title
9
+ st.title('Interactive Tag Frequency Visualization')
10
+
11
+ # Folder path
12
+ folder_path = "/home/caimera-prod/eye_tagged_data"
13
+
14
+ if folder_path:
15
+ # Initialize a Counter to count tag frequency
16
+ tag_counter = Counter()
17
+ file_resolutions = []
18
+
19
+ # Iterate through each .txt file in the folder
20
+ for file_name in os.listdir(folder_path):
21
+ if file_name.endswith('.txt'):
22
+ file_path = os.path.join(folder_path, file_name)
23
+ with open(file_path, 'r') as file:
24
+ content = file.read().strip()
25
+ if 'eye' in content.lower(): # Check if 'eye' is in the content
26
+ tags = content.split(',')
27
+ # Clean and count each tag
28
+ tags = [tag.strip().lower() for tag in tags]
29
+ tag_counter.update(tags)
30
+
31
+ # Find the corresponding image and get its resolution
32
+ image_name = file_name.replace('.txt', '.jpg') # Assuming the images are in .jpg format
33
+ image_path = os.path.join(folder_path, image_name)
34
+ if os.path.exists(image_path):
35
+ image = Image.open(image_path)
36
+ resolution = image.size # (width, height)
37
+ file_resolutions.append((file_name, resolution[0], resolution[1]))
38
+ else:
39
+ file_resolutions.append((file_name, 'N/A', 'N/A')) # In case the image is not found
40
+
41
+ # Convert the Counter and resolution data to a DataFrame for better display
42
+ tag_data = pd.DataFrame(tag_counter.items(), columns=['Tag', 'Count'])
43
+ tag_data = tag_data.sort_values(by='Count', ascending=False).reset_index(drop=True)
44
+
45
+ resolution_data = pd.DataFrame(file_resolutions, columns=['File Name', 'Width', 'Height'])
46
+
47
+ # Display the DataFrame as a table in Streamlit
48
+ if not tag_data.empty:
49
+ st.subheader('Tag Frequency Table')
50
+ st.dataframe(tag_data)
51
+
52
+ st.subheader('Image Resolutions for Files Containing "eye"')
53
+ st.dataframe(resolution_data)
54
+
55
+ # Create an interactive bar chart using Plotly
56
+ st.subheader('Interactive Tag Frequency Bar Chart')
57
+ fig = px.bar(tag_data, x='Tag', y='Count', title='Tag Frequency', labels={'Count': 'Frequency'}, height=600)
58
+ fig.update_layout(xaxis_title='Tags', yaxis_title='Frequency')
59
+ st.plotly_chart(fig)
60
+ else:
61
+ st.write("No tags found in files containing the word 'eye'.")
st_tag_clean.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections import Counter
3
+ import streamlit as st
4
+ import pandas as pd
5
+ import plotly.express as px
6
+
7
+ # Streamlit app title
8
+ # st.title('Interactive Tag Frequency Visualization')
9
+
10
+ # File uploader to select folder
11
+ folder_path = "/home/caimera-prod/kohya_new_dataset"
12
+
13
+ if folder_path:
14
+ # Initialize a Counter to count tag frequency
15
+ tag_counter = Counter()
16
+
17
+ # Iterate through each .txt file in the folder
18
+ for file_name in os.listdir(folder_path):
19
+ if file_name.endswith('.txt'):
20
+ file_path = os.path.join(folder_path, file_name)
21
+ with open(file_path, 'r') as file:
22
+ tags = file.read().strip().split(',')
23
+ # Clean, filter out empty tags, and count each tag
24
+ tags = [tag.strip().lower() for tag in tags if tag.strip()]
25
+ tag_counter.update(tags)
26
+
27
+ # Convert the Counter to a DataFrame for better display
28
+ tag_data = pd.DataFrame(tag_counter.items(), columns=['Tag', 'Count'])
29
+
30
+ # Filter out any rows with empty tags in the DataFrame (shouldn't be necessary after above filtering)
31
+ tag_data = tag_data[tag_data['Tag'] != '']
32
+
33
+ # Sort the DataFrame by count
34
+ tag_data = tag_data.sort_values(by='Count', ascending=False).reset_index(drop=True)
35
+
36
+ # Display the DataFrame as a table in Streamlit
37
+ st.subheader('Tag Frequency Table')
38
+ st.dataframe(tag_data)
39
+
40
+ # Create an interactive bar chart using Plotly
41
+ st.subheader('Interactive Tag Frequency Bar Chart')
42
+ fig = px.bar(tag_data, x='Tag', y='Count', title='Tag Frequency', labels={'Count': 'Frequency'}, height=600)
43
+ fig.update_layout(xaxis_title='Tags', yaxis_title='Frequency')
44
+ st.plotly_chart(fig)
stream_lit_plotly.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections import Counter
3
+ import streamlit as st
4
+ import pandas as pd
5
+ import plotly.express as px
6
+
7
+ # Streamlit app title
8
+ # st.title('Interactive Tag Frequency Visualization')
9
+
10
+ # File uploader to select folder
11
+ folder_path = "/home/caimera-prod/eye_tagged_data"
12
+
13
+ if folder_path:
14
+ # Initialize a Counter to count tag frequency
15
+ tag_counter = Counter()
16
+
17
+ # Iterate through each .txt file in the folder
18
+ for file_name in os.listdir(folder_path):
19
+ if file_name.endswith('.txt'):
20
+ file_path = os.path.join(folder_path, file_name)
21
+ with open(file_path, 'r') as file:
22
+ tags = file.read().strip().split(',')
23
+ # Clean and count each tag
24
+ tags = [tag.strip().lower() for tag in tags]
25
+ tag_counter.update(tags)
26
+
27
+ # Convert the Counter to a DataFrame for better display
28
+ tag_data = pd.DataFrame(tag_counter.items(), columns=['Tag', 'Count'])
29
+ tag_data = tag_data.sort_values(by='Count', ascending=False).reset_index(drop=True)
30
+
31
+ # Display the DataFrame as a table in Streamlit
32
+ st.subheader('Tag Frequency Table')
33
+ st.dataframe(tag_data)
34
+
35
+ # Create an interactive bar chart using Plotly
36
+ st.subheader('Interactive Tag Frequency Bar Chart')
37
+ fig = px.bar(tag_data, x='Tag', y='Count', title='Tag Frequency', labels={'Count': 'Frequency'}, height=600)
38
+ fig.update_layout(xaxis_title='Tags', yaxis_title='Frequency')
39
+ st.plotly_chart(fig)
stream_new.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from PIL import Image
4
+ import math
5
+
6
+ # Function to list files with given extensions
7
+ def list_files(folder_path, extensions):
8
+ files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
9
+ return [f for f in files if f.split('.')[-1] in extensions]
10
+
11
+ # Set up Streamlit app
12
+ st.title("Display Images and Corresponding Text Files")
13
+
14
+ # Define the folder path
15
+ folder_path = "/home/caimera-prod/kohya_new_dataset"
16
+
17
+ # List of allowed image and text extensions
18
+ image_extensions = ['jpg', 'jpeg', 'png']
19
+ text_extensions = ['txt']
20
+
21
+ # Get the list of image and text files
22
+ files = list_files(folder_path, image_extensions + text_extensions)
23
+
24
+ # Filter files into images and texts
25
+ images = [f for f in files if f.split('.')[-1] in image_extensions]
26
+ texts = [f for f in files if f.split('.')[-1] in text_extensions]
27
+
28
+ # Create a dictionary to map image files to their corresponding text files
29
+ file_map = {}
30
+ for image in images:
31
+ base_name = os.path.splitext(image)[0]
32
+ corresponding_text = base_name + '.txt'
33
+ if corresponding_text in texts:
34
+ file_map[image] = corresponding_text
35
+
36
+ # Pagination settings
37
+ items_per_page = 5
38
+ total_items = len(file_map)
39
+ total_pages = math.ceil(total_items / items_per_page)
40
+ page = st.sidebar.slider('Page', 1, total_pages, 1)
41
+
42
+ # Calculate the start and end indices for the current page
43
+ start_idx = (page - 1) * items_per_page
44
+ end_idx = start_idx + items_per_page
45
+
46
+ # Display images and text files side by side with editing capability
47
+ for image_file, text_file in list(file_map.items())[start_idx:end_idx]:
48
+ col1, col2 = st.columns(2)
49
+
50
+ with col1:
51
+ st.image(os.path.join(folder_path, image_file), caption=image_file, use_column_width=True)
52
+
53
+ with col2:
54
+ text_path = os.path.join(folder_path, text_file)
55
+ with open(text_path, 'r') as file:
56
+ text_content = file.read()
57
+
58
+ # Text area for editing text content
59
+ updated_text = st.text_area(text_file, text_content, height=300)
60
+
61
+ # Save the edited content back to the file if changes were made
62
+ if st.button(f'Save {text_file}'):
63
+ with open(text_path, 'w') as file:
64
+ file.write(updated_text)
65
+ st.success(f"Changes to {text_file} saved successfully.")
streamlit.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections import Counter
3
+ import streamlit as st
4
+ import pandas as pd
5
+
6
+ # Streamlit app title
7
+ # st.title('Tag Frequency Table')
8
+
9
+ # File uploader to select folder
10
+ folder_path = "/home/caimera-prod/Paid-data"
11
+
12
+ if folder_path:
13
+ # Initialize a Counter to count tag frequency
14
+ tag_counter = Counter()
15
+
16
+ # Iterate through each .txt file in the folder
17
+ for file_name in os.listdir(folder_path):
18
+ if file_name.endswith('.txt'):
19
+ file_path = os.path.join(folder_path, file_name)
20
+ with open(file_path, 'r') as file:
21
+ tags = file.read().strip().split(',')
22
+ # Clean and count each tag
23
+ tags = [tag.strip().lower() for tag in tags]
24
+ tag_counter.update(tags)
25
+
26
+ # Convert the Counter to a DataFrame for better display
27
+ tag_data = pd.DataFrame(tag_counter.items(), columns=['Tag', 'Count'])
28
+ tag_data = tag_data.sort_values(by='Count', ascending=False).reset_index(drop=True)
29
+
30
+ # Display the DataFrame as a table in Streamlit
31
+ st.subheader('Tag Frequency Table')
32
+ st.table(tag_data)
33
+
transfer.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+
4
+ def move_non_npz_files(source_folder, destination_folder):
5
+ # Ensure the destination folder exists
6
+ if not os.path.exists(destination_folder):
7
+ os.makedirs(destination_folder)
8
+
9
+ # Iterate over all files in the source folder
10
+ for filename in os.listdir(source_folder):
11
+ # Construct the full file path
12
+ source_file_path = os.path.join(source_folder, filename)
13
+
14
+ # Check if the current item is a file (not a directory) and not a .npz file
15
+ if os.path.isfile(source_file_path) and not filename.endswith('.npz'):
16
+ # Construct the destination file path
17
+ destination_file_path = os.path.join(destination_folder, filename)
18
+
19
+ # Move the file
20
+ shutil.move(source_file_path, destination_file_path)
21
+ print(f'Moved: {filename} to {destination_folder}')
22
+
23
+ # Define your source and destination folders
24
+ source_folder = '/path/to/source/folder'
25
+ destination_folder = '/path/to/destination/folder'
26
+
27
+ # Move non-.npz files
28
+ move_non_npz_files(source_folder, destination_folder)