Delete b.py
Browse files
b.py
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
from PIL import Image
|
4 |
-
from collections import Counter
|
5 |
-
import pandas as pd
|
6 |
-
# Function to list files with given extensions
|
7 |
-
def list_files(folder_path, extensions):
|
8 |
-
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
|
9 |
-
return [f for f in files if f.split('.')[-1] in extensions]
|
10 |
-
|
11 |
-
# Function to get tag frequencies from text files
|
12 |
-
def get_tag_frequencies(text_files):
|
13 |
-
tag_counter = Counter()
|
14 |
-
for text_file in text_files:
|
15 |
-
with open(text_file, 'r') as file:
|
16 |
-
tags = file.read().split()
|
17 |
-
tag_counter.update(tags)
|
18 |
-
return tag_counter
|
19 |
-
|
20 |
-
# Set up Streamlit app
|
21 |
-
st.title("Display Images and Corresponding Text Files")
|
22 |
-
|
23 |
-
# Define the folder path
|
24 |
-
folder_path = "/home/caimera-prod/kohya_new_dataset"
|
25 |
-
|
26 |
-
# List of allowed image and text extensions
|
27 |
-
image_extensions = ['jpg', 'jpeg', 'png']
|
28 |
-
text_extensions = ['txt']
|
29 |
-
|
30 |
-
# Get the list of image and text files
|
31 |
-
files = list_files(folder_path, image_extensions + text_extensions)
|
32 |
-
|
33 |
-
# Filter files into images and texts
|
34 |
-
images = [f for f in files if f.split('.')[-1] in image_extensions]
|
35 |
-
texts = [f for f in files if f.split('.')[-1] in text_extensions]
|
36 |
-
|
37 |
-
# Create a dictionary to map image files to their corresponding text files
|
38 |
-
file_map = {}
|
39 |
-
for image in images:
|
40 |
-
base_name = os.path.splitext(image)[0]
|
41 |
-
corresponding_text = base_name + '.txt'
|
42 |
-
if corresponding_text in texts:
|
43 |
-
file_map[image] = corresponding_text
|
44 |
-
|
45 |
-
# Get tag frequencies
|
46 |
-
text_files_paths = [os.path.join(folder_path, text) for text in texts]
|
47 |
-
tag_frequencies = get_tag_frequencies(text_files_paths)
|
48 |
-
|
49 |
-
# Prepare tag frequencies for display
|
50 |
-
tag_frequencies_data = [{'Tag': tag, 'Frequency': freq} for tag, freq in tag_frequencies.items()]
|
51 |
-
tag_frequencies_df = pd.DataFrame(tag_frequencies_data)
|
52 |
-
|
53 |
-
# Display tag frequencies in a table
|
54 |
-
st.subheader("Tag Frequencies")
|
55 |
-
st.table(tag_frequencies_df)
|
56 |
-
|
57 |
-
# Display images and text files side by side
|
58 |
-
for image_file, text_file in file_map.items():
|
59 |
-
col1, col2 = st.columns(2)
|
60 |
-
|
61 |
-
with col1:
|
62 |
-
st.image(os.path.join(folder_path, image_file), caption=image_file, use_column_width=True)
|
63 |
-
|
64 |
-
with col2:
|
65 |
-
with open(os.path.join(folder_path, text_file), 'r') as file:
|
66 |
-
st.text_area(text_file, file.read(), height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|