import os from collections import Counter import streamlit as st import pandas as pd import plotly.express as px # Streamlit app title # st.title('Interactive Tag Frequency Visualization') # File uploader to select folder folder_path = "/home/caimera-prod/eye_tagged_data" if folder_path: # Initialize a Counter to count tag frequency tag_counter = Counter() # Iterate through each .txt file in the folder for file_name in os.listdir(folder_path): if file_name.endswith('.txt'): file_path = os.path.join(folder_path, file_name) with open(file_path, 'r') as file: tags = file.read().strip().split(',') # Clean and count each tag tags = [tag.strip().lower() for tag in tags] tag_counter.update(tags) # Convert the Counter to a DataFrame for better display tag_data = pd.DataFrame(tag_counter.items(), columns=['Tag', 'Count']) tag_data = tag_data.sort_values(by='Count', ascending=False).reset_index(drop=True) # Display the DataFrame as a table in Streamlit st.subheader('Tag Frequency Table') st.dataframe(tag_data) # Create an interactive bar chart using Plotly st.subheader('Interactive Tag Frequency Bar Chart') fig = px.bar(tag_data, x='Tag', y='Count', title='Tag Frequency', labels={'Count': 'Frequency'}, height=600) fig.update_layout(xaxis_title='Tags', yaxis_title='Frequency') st.plotly_chart(fig)