File size: 965 Bytes
5bbf3da 4976bb5 5bbf3da 4976bb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language:
- en
license:
- apache-2.0
task_categories:
- token-classification
pretty_name: 'Chemical Named Entity Recognition (CNER) Dataset for BatteryDataExtractor'
---
# CNER Dataset
## Original Data Source
#### CHEMDNER
M. Krallinger, O. Rabal, F. Leitner, M. Vazquez, D. Salgado,
Z. Lu, R. Leaman, Y. Lu, D. Ji, D. M. Lowe et al., J. Cheminf.,
2015, 7, 1–17.
#### MatScholar
I. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova, A. Tre-
wartha, K. A. Persson, G. Ceder and A. Jain, J. Chem. Inf.
Model., 2019, 59, 3692–3702.
#### SOFC
A. Friedrich, H. Adel, F. Tomazic, J. Hingerl, R. Benteau,
A. Maruscyk and L. Lange, The SOFC-exp corpus and neural
approaches to information extraction in the materials science
domain, 2020, https://arxiv.org/abs/2006.03039.
#### BioNLP
G. Crichton, S. Pyysalo, B. Chiu and A. Korhonen, BMC Bioinf.,
2017, 18, 1–14.
## Citation
BatteryDataExtractor: battery-aware text-mining software embedded with BERT models |