File size: 7,160 Bytes
a5f760c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from argparse import Namespace
import json
from pathlib import Path
from typing import Tuple, List, Dict
import gym
import torch
import numpy as np
import babyai.utils as utils
import babyai_sr.utils as utils_sr
from babyai_sr.arguments import ArgumentParser
from babyai_sr.rl.algos import TestAlgo, BaseAlgo
from babyai_sr.rl.utils import ParallelEnv
import util as lib_util
##### based on repo/babyai_sr/rl/algos/test.py #####
SENDER = 0
RECEIVER = 1
def extract_messages(message, done, active) -> List[List[int]]:
argmax_messages = message.argmax(-1)[:, :, SENDER]
done_np = done.cpu().numpy()
done_idxs = np.argwhere(done_np)
message_list = []
for i in range(done_idxs.shape[0]):
prev_end = done_idxs[i - 1] if i > 0 else [0, -1]
end = done_idxs[i]
# If we are spanning the border between procs, adjust the prev_end
# to start at the end's proc.
if prev_end[0] != end[0]:
prev_end = [end[0], -1]
# Take messages from the given proc and
indexer = np.s_[prev_end[0], prev_end[1] + 1 : (end[1] + 1)]
ep_messages = argmax_messages[indexer]
# We only want messages for when the sender is active since the
# message is just repeated for the receiver until the sender is
# active again.
ep_active = active[indexer][:, SENDER]
final_ep_messages = ep_messages[ep_active]
message_list.append(final_ep_messages.cpu().tolist())
return message_list
class TestAlgo(BaseAlgo):
def __init__(
self,
env,
models,
num_frames_per_proc=40,
discount=0.99,
gae_lambda=0.99,
preprocess_obss=None,
reshape_reward=None,
use_comm=True,
conventional=False,
argmax=True,
):
super().__init__(
env,
models,
num_frames_per_proc,
discount,
gae_lambda,
preprocess_obss,
reshape_reward,
use_comm,
conventional,
argmax,
)
def collect_episodes(self, episodes):
# Collect experiences.
exps, _ = self.collect_experiences()
batch = 1
shape_prefix = (self.num_procs, self.num_frames_per_proc)
active = exps.active.view(*shape_prefix, *exps.active.shape[1:])
done = exps.done.view(*shape_prefix, *exps.done.shape[1:])
message = exps.message.view(*shape_prefix, *exps.message.shape[1:])
reward = exps.reward.view(*shape_prefix, *exps.reward.shape[1:])
log = {
"return_per_episode": [],
}
proc = 0
frame = [0] * self.num_procs
episodes_done = 0
while True:
if done[proc, frame[proc]]:
episodes_done += 1
log["return_per_episode"].append(
reward[proc, frame[proc], RECEIVER].item()
)
if episodes_done == episodes:
break
frame[proc] += 1
proc = (proc + 1) % self.num_procs
else:
frame[proc] += 1
if frame[proc] == batch * self.num_frames_per_proc:
exps, _ = self.collect_experiences()
batch += 1
next_active = exps.active.view(*shape_prefix, *exps.active.shape[1:])
next_done = exps.done.view(*shape_prefix, *exps.done.shape[1:])
next_message = exps.message.view(*shape_prefix, *exps.message.shape[1:])
next_reward = exps.reward.view(*shape_prefix, *exps.reward.shape[1:])
active = torch.cat((active, next_active), 1)
done = torch.cat((done, next_done), 1)
message = torch.cat((message, next_message), 1)
reward = torch.cat((reward, next_reward), 1)
message_list = extract_messages(message, done, active)
return message_list, log
##### based on repo/babyai_sr/scripts/test_rl.py #####
def parse_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument("--name", help="name of the configuration")
parser.add_argument("--sender", default=None, help="name of the sender (REQUIRED)")
parser.add_argument(
"--receiver", default=None, help="name of the receiver (REQUIRED)"
)
parser.add_argument(
"--sample",
action="store_true",
default=False,
help="sample messages instead of using argmax",
)
parser.add_argument(
"--episodes",
type=int,
default=1000,
help="number of episodes to test on (default: 1000)",
)
parser.add_argument("--len-message", default=None, help="dummy")
parser.add_argument("--num-symbols", default=None, help="dummy")
return parser.parse_args()
def get_episodes(args: Namespace) -> Tuple[List, Dict]:
utils.seed(args.seed)
envs = []
for i in range(args.procs):
env = gym.make(args.env)
env.seed(100 * args.seed + i)
envs.append(env)
penv = ParallelEnv(
envs, args.n, args.conventional, args.archimedean, args.informed_sender
)
sender = utils.load_model(args.sender)
receiver = utils.load_model(args.receiver)
sender.eval()
receiver.eval()
if torch.cuda.is_available():
sender.cuda()
receiver.cuda()
reshape_reward = lambda _0, _1, reward, _2: args.reward_scale * reward
obss_preprocessor = utils_sr.MultiObssPreprocessor(
[args.sender, args.receiver], [envs[0].observation_space] * 2
)
test_algo = TestAlgo(
penv,
[sender, receiver],
args.frames_per_proc,
args.discount,
args.gae_lambda,
obss_preprocessor,
reshape_reward,
not args.no_comm,
args.conventional,
not args.sample,
)
return test_algo.collect_episodes(args.episodes)
def write_results(args: Namespace, message_list: List, logs: Dict) -> None:
out_path = Path(f"../../data/{args.name}")
out_path.mkdir(exist_ok=True, parents=True)
return_per_episode = utils.synthesize(logs["return_per_episode"])
success_per_episode = utils.synthesize(
[1 if r > 0 else 0 for r in logs["return_per_episode"]]
)
metrics = {
"success_rate": success_per_episode["mean"],
"success_rate_std": success_per_episode["std"],
"reward_per_episode": return_per_episode["mean"],
"reward_per_episode_std": return_per_episode["std"],
}
lib_util.write_system_metrics(out_path, metrics)
with (out_path / "corpus.jsonl").open("w") as fo:
for message in message_list:
flat = [x for y in message for x in y]
json.dump(flat, fo, indent=None)
fo.write("\n")
with (out_path / "corpus.structured.jsonl").open("w") as fo:
for message in message_list:
json.dump(message, fo, indent=None)
fo.write("\n")
def main() -> None:
args = parse_args()
message_list, logs = get_episodes(args)
write_results(args, message_list, logs)
if __name__ == "__main__":
main()
|