File size: 10,533 Bytes
a5f760c
 
 
 
e0cd172
 
 
a5f760c
e0cd172
a5f760c
 
e0cd172
a5f760c
e0cd172
 
 
 
 
 
0e8a9b5
e0cd172
 
 
 
 
 
 
 
a6b99c2
 
 
 
 
 
 
0e8a9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cd172
 
 
a5f760c
 
e0cd172
a5f760c
 
 
 
a74df40
 
 
 
 
 
a5f760c
 
 
e0cd172
 
a5f760c
 
 
 
e0cd172
a5f760c
 
 
 
e0cd172
a5f760c
 
 
 
a74df40
e0cd172
a5f760c
 
e0cd172
a5f760c
 
 
 
 
a74df40
 
 
 
a5f760c
 
a74df40
a5f760c
 
 
 
 
 
 
e0cd172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b99c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cd172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e8a9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cd172
 
 
0e8a9b5
e0cd172
 
 
a5f760c
e0cd172
 
 
a5f760c
 
 
 
 
 
 
 
e0cd172
0e8a9b5
 
036fdbb
 
a5f760c
a74df40
e0cd172
a5f760c
0e8a9b5
e0cd172
a5f760c
 
 
e0cd172
036fdbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import json
from pathlib import Path
from textwrap import dedent
import datetime
import functools
import types
import typing

import pydantic
import mlcroissant as mlc  # type: ignore

from . import validate

_distribution: list[mlc.FileObject | mlc.FileSet] = [
    mlc.FileObject(
        id="repo",
        name="repo",
        content_url="https://huggingface.co/datasets/bboldt/elcc/",
        encoding_format="git+https",
        sha256="main",
    ),
    mlc.FileSet(
        id="system-metadata-files",
        name="system-metadata-files",
        contained_in=["repo"],
        includes=["systems/*/system.json"],
        encoding_format="application/json",
    ),
    mlc.FileSet(
        id="system-metadata-files-raw",
        name="system-metadata-files-raw",
        contained_in=["repo"],
        includes=["systems/*/system.json"],
        encoding_format="text/plain",
    ),
    mlc.FileSet(
        id="corpus-metadata-files",
        name="corpus-metadata-files",
        contained_in=["repo"],
        includes=["systems/*/data/*/metadata.json"],
        encoding_format="application/json",
    ),
    mlc.FileSet(
        id="corpus-metadata-files-raw",
        name="corpus-metadata-files-raw",
        contained_in=["repo"],
        includes=["systems/*/data/*/metadata.json"],
        encoding_format="text/plain",
    ),
]

_metadata = mlc.Metadata(
    name="ELCC",
    description="ELCC is a collection of emergent language corpora with accompanying metadata and analyses.",
    license=["https://creativecommons.org/licenses/by/4.0/"],
    url="https://huggingface.co/datasets/bboldt/elcc/",
    date_published=datetime.datetime.now(datetime.UTC),
    cite_as=dedent(
        """\
        @misc{boldt2024elcc,
          title = "{ELCC}: the Emergent Language Corpus Collection",
          author = "Brendon Boldt and David Mortensen",
          year = 2024,
          url = "https://huggingface.co/datasets/bboldt/elcc",
        }"""
    ),
    version="0.1.0",
    keywords=["emergent communication", "emergent language", "corpus"],
    distribution=_distribution,
    record_sets=[],
)


def insert_corpora(metadata: mlc.Metadata) -> None:
    paths = sorted(list(Path("systems").glob("*/data/*/corpus.json")))
    for path in paths:
        comps = str(path).split("/")
        name = f"{comps[-4]}/{comps[-2]}"

        metadata.distribution.append(
            mlc.FileObject(
                id=str(path),
                name=str(path),
                content_url=str(path),
                encoding_format="application/json",
                contained_in=["repo"],
            )
        )
        metadata.record_sets.append(
            mlc.RecordSet(
                id=name,
                name=name,
                fields=[
                    mlc.Field(
                        id=f"{name}/line",
                        name="line",
                        data_types=mlc.DataType.INTEGER,
                        repeated=True,
                        source=mlc.Source(
                            file_object=str(path),
                            extract=mlc.Extract(json_path="$[*]"),
                        ),
                    ),
                ],
            )
        )


def make_system_field(base_name: str, typ: type | None) -> mlc.Field:
    name = f"system-metadata/{base_name}"
    jp = f"$.{base_name}"

    type_map = [
        (int, mlc.DataType.INTEGER),
        (float, mlc.DataType.FLOAT),
        (str, mlc.DataType.TEXT),
        (bool, mlc.DataType.BOOL),
    ]
    mlc_typ = None
    for x, y in type_map:
        if isinstance(typ, types.UnionType):
            not_none = [x for x in typ.__args__ if not x == type(None)]
            if len(typ.__args__) > 2 or len(not_none) != 1:
                raise ValueError(f"Cannot handle {typ}")
            typ = not_none[0]
        elif isinstance(typ, typing._LiteralGenericAlias):
            typ = type(typ.__args__[0])
        elif base_name == "system.data_source":
            typ = str
        if issubclass(typ, x):
            mlc_typ = y
            break
    if mlc_typ is None:
        mlc_typ = mlc.DataType.TEXT

    return mlc.Field(
        id=name,
        name=base_name,
        data_types=[mlc_typ],
        source=mlc.Source(
            file_set="system-metadata-files",
            extract=mlc.Extract(json_path=jp),
        ),
    )


def insert_system_md(metadata: mlc.Metadata) -> None:
    metadata.record_sets.append(
        mlc.RecordSet(
            id="system-metadata-raw",
            name="system-metadata-raw",
            fields=[
                mlc.Field(
                    id="system-metadata-raw/path",
                    name="path",
                    data_types=[mlc.DataType.TEXT],
                    source=mlc.Source(
                        file_set="system-metadata-files-raw",
                        extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
                    ),
                    # References always seem to cause conflicting read method errors.
                    # references={"field": {"@id": "system-metadata/path"}},
                ),
                mlc.Field(
                    id="system-metadata-raw/raw",
                    name="raw",
                    data_types=[mlc.DataType.TEXT],
                    source=mlc.Source(
                        file_set="system-metadata-files-raw",
                        extract=mlc.Extract(file_property=mlc.FileProperty.content),
                    ),
                ),
            ],
        )
    )

    fields = [
        mlc.Field(
            id="system-metadata/path",
            name="path",
            data_types=[mlc.DataType.TEXT],
            source=mlc.Source(
                file_set="system-metadata-files",
                extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
            ),
        ),
    ]
    for k0, v0 in validate.SystemMetadata.model_fields.items():
        assert v0.annotation is not None
        if isinstance(v0.annotation, type) and issubclass(
            v0.annotation, pydantic.BaseModel
        ):
            # Only doing one level of nesting for now.
            for k1, v1 in v0.annotation.model_fields.items():
                if k1 == "variants":
                    continue
                fields.append(make_system_field(f"{k0}.{k1}", v1.annotation))
        else:
            if k0 == "notes":
                continue
            fields.append(make_system_field(k0, v0.annotation))

    metadata.record_sets.append(
        mlc.RecordSet(
            id="system-metadata",
            name="system-metadata",
            fields=fields,
        )
    )


def insert_corpus_md(metadata: mlc.Metadata) -> None:
    metadata.record_sets.append(
        mlc.RecordSet(
            id="corpus-metadata-raw",
            name="corpus-metadata-raw",
            fields=[
                mlc.Field(
                    id="corpus-metadata-raw/path",
                    name="path",
                    data_types=[mlc.DataType.TEXT],
                    source=mlc.Source(
                        file_set="corpus-metadata-files-raw",
                        extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
                    ),
                    # References always seem to cause conflicting read method errors.
                    # references={"field": {"@id": "corpus-metadata/path"}},
                ),
                mlc.Field(
                    id="corpus-metadata-raw/raw",
                    name="raw",
                    data_types=[mlc.DataType.TEXT],
                    source=mlc.Source(
                        file_set="corpus-metadata-files-raw",
                        extract=mlc.Extract(file_property=mlc.FileProperty.content),
                    ),
                ),
            ],
        )
    )

    exemplar_path = "systems/nav-to-center/data/temperature_10/metadata.json"
    with open(exemplar_path) as fo:
        exemplar_data = json.load(fo)
    fields = [
        mlc.Field(
            id="corpus-metadata/path",
            name="path",
            data_types=[mlc.DataType.TEXT],
            source=mlc.Source(
                file_set="corpus-metadata-files",
                extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
                # transforms=[mlc.Transform(regex=r"(....)")],
            ),
            # References always seem to cause conflicting read method errors.
            # references={"field": {"@id": "corpus-metadata/path"}},
        ),
    ]
    items = exemplar_data["metrics"]["analysis"].items()
    for k, v in items:
        name = f"metrics.analysis.{k}".replace(" ", "_").lower()
        if isinstance(v, int):
            typ = mlc.DataType.INTEGER
        elif isinstance(v, bool):
            typ = mlc.DataType.BOOL
        else:
            typ = mlc.DataType.FLOAT
        jp = f'$.metrics.analysis["{k}"]'
        fields.append(
            mlc.Field(
                id=f"corpus-metadata/{name}",
                name=name,
                data_types=[typ],
                source=mlc.Source(
                    file_set="corpus-metadata-files",
                    # extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
                    extract=mlc.Extract(json_path=jp),
                ),
            )
        )

    metadata.record_sets.append(
        mlc.RecordSet(
            id="corpus-metadata",
            name="corpus-metadata",
            fields=fields,
        )
    )


@functools.cache
def get_metadata() -> mlc.Metadata:
    insert_system_md(_metadata)
    insert_corpus_md(_metadata)
    insert_corpora(_metadata)
    return _metadata


def save_metadata() -> None:
    metadata = get_metadata()
    print(_metadata.issues.report())
    with open("croissant.json", "w") as fo:
        d = metadata.to_json()
        d["datePublished"] = str(d["datePublished"])
        json.dump(d, fo, indent=2)


def test() -> None:
    dataset = mlc.Dataset(jsonld="croissant.json")
    # records = dataset.records(record_set="babyai-sr/GoToObj")
    # records = dataset.records(record_set="system-metadata")
    # records = dataset.records(record_set="system-metadata-raw")
    # records = dataset.records(record_set="corpus-metadata")
    records = dataset.records(record_set="corpus-metadata-raw")

    for i, x in enumerate(records):
        print(i, x)
        if i > 10:
            break
            pass


if __name__ == "__main__":
    save_metadata()
    # test()