|
import json |
|
from pathlib import Path |
|
from textwrap import dedent |
|
import datetime |
|
|
|
import mlcroissant as mlc |
|
|
|
|
|
metadata = mlc.Metadata( |
|
name="ELCC", |
|
description="ELCC is a collection of emergent language corpora with accompanying metadata and analyses.", |
|
license="https://creativecommons.org/licenses/by/4.0/", |
|
url="https://huggingface.co/datasets/bboldt/elcc/", |
|
date_published=datetime.datetime.now(datetime.UTC), |
|
cite_as=dedent( |
|
"""\ |
|
@misc{boldt2024elcc, |
|
title = "{ELCC}: the Emergent Language Corpus Collection", |
|
author = "Brendon Boldt and David Mortensen", |
|
year = 2024, |
|
url = "https://huggingface.co/datasets/bboldt/elcc", |
|
}""" |
|
), |
|
version="0.1.0", |
|
keywords=["emergent communication", "emergent language", "corpus"], |
|
) |
|
|
|
|
|
def insert_corpora(metadata: mlc.Metadata) -> None: |
|
paths = sorted(list(Path("data").glob("*/data/*/corpus.json"))) |
|
|
|
dist: list[dict] = [ |
|
mlc.FileObject( |
|
id="hf-repo", |
|
name="hf-repo", |
|
content_url="https://huggingface.co/datasets/bboldt/elcc/", |
|
encoding_format="git+https", |
|
sha256="main", |
|
) |
|
] |
|
metadata.distribution = dist |
|
record_sets: list[dict] = [] |
|
metadata.record_sets = record_sets |
|
|
|
for path in paths: |
|
comps = str(path).split("/") |
|
name = f"{comps[-4]}/{comps[-2]}" |
|
|
|
dist.append( |
|
mlc.FileObject( |
|
id=str(path), |
|
name=str(path), |
|
content_url=str(path), |
|
encoding_format="text/plain", |
|
contained_in=["hf-repo"], |
|
) |
|
) |
|
record_sets.append( |
|
mlc.RecordSet( |
|
id=name, |
|
name=name, |
|
fields=[ |
|
mlc.Field( |
|
id=f"{name}/content", |
|
name="content", |
|
data_types=mlc.DataType.TEXT, |
|
source=mlc.Source( |
|
file_object=str(path), |
|
extract=mlc.Extract(file_property="content"), |
|
), |
|
), |
|
], |
|
) |
|
) |
|
|
|
|
|
def main() -> None: |
|
insert_corpora(metadata) |
|
|
|
print(metadata.issues.report()) |
|
with open("croissant.json", "w") as fo: |
|
d = metadata.to_json() |
|
d["datePublished"] = str(d["datePublished"]) |
|
json.dump(d, fo, indent=2) |
|
|
|
|
|
def test() -> None: |
|
dataset = mlc.Dataset(jsonld="croissant.json") |
|
records = dataset.records(record_set="babyai-sr/GoToObj") |
|
|
|
for i, rec in enumerate(records): |
|
print(rec) |
|
if i > 10: |
|
break |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|