elcc / util /analysis /metric.py
bboldt's picture
Initial public commit
a5f760c
raw
history blame
2.84 kB
from typing import Callable, TypeVar, Mapping
import numpy as np
metric_registry = []
NumMap = Mapping[str, float | int | bool]
NM = TypeVar("NM", bound=NumMap)
def register(
func: Callable[[list[np.ndarray]], NM]
) -> Callable[[list[np.ndarray]], NM]:
metric_registry.append(func)
return func
@register
def basic(data: list[np.ndarray]) -> NumMap:
catted = np.concatenate(data)
return {
"Token Count": len(catted),
"Line Count": len(data),
"Tokens per Line": len(np.concatenate(data)) / len(data),
"Tokens per Line SD": float(np.std([len(x) for x in data])),
"Unique Tokens": len(np.unique(catted)),
"Unique Lines": len({hash(l.data.tobytes()) for l in data}),
}
@register
def entropy_1gram(data: list[np.ndarray]) -> NumMap:
catted = np.concatenate(data)
counts = np.unique(catted, return_counts=True)[1]
normed = counts / counts.sum()
ent = -(normed * np.log2(normed)).sum()
return {
"1-gram Entropy": ent,
"1-gram Normalized Entropy": ent / np.log2(len(counts)),
}
@register
def conditional_entropy_2gram(data: list[np.ndarray]) -> NumMap:
windows = [np.lib.stride_tricks.sliding_window_view(x, (2,), axis=-1) for x in data]
catted = np.concatenate(windows)
counts = np.unique(catted, axis=0, return_counts=True)[1]
normed = counts / counts.sum()
ent = -(normed * np.log2(normed)).sum()
return {
"2-gram Entropy": ent,
"2-gram Conditional Entropy": ent - entropy_1gram(data)["1-gram Entropy"],
}
@register
def entropy_per_line(data: list[np.ndarray]) -> NumMap:
catted = np.concatenate(data)
unique_values, counts_dense = np.unique(catted, return_counts=True)
counts = np.zeros(np.max(unique_values) + 1, dtype=float)
counts[unique_values] = counts_dense
# Smoothing
counts += 1e-10
logged = np.log2(counts / counts.sum())
bpm = -np.mean([logged[msg].sum() for msg in data])
return {"Entropy per Line": bpm}
@register
def end_of_sentence(data: list[np.ndarray]) -> NumMap:
"""Detect if end-of-sentence token present."""
candidates = {l[-1] for l in data}
if len(candidates) == 1:
c = list(candidates)[0]
eos_only_at_end = lambda x: all(x[:-1] != c)
all_eos_rightward = lambda x: all(
(x[i] != c) or all(x[i:] == c) for i in range(len(x))
)
eos_present = all(eos_only_at_end(x) or all_eos_rightward(x) for x in data)
same_length = len({len(l) for l in data}) == 1
padding_exists = any(any(x[:-1] == c) for x in data)
eos_padding = eos_present and same_length and padding_exists
else:
eos_present = False
eos_padding = False
return {
"EoS Token Present": eos_present,
"EoS Padding": eos_padding,
}