|
from typing import Callable, TypeVar, Mapping |
|
|
|
import numpy as np |
|
|
|
|
|
metric_registry = [] |
|
NumMap = Mapping[str, float | int | bool] |
|
NM = TypeVar("NM", bound=NumMap) |
|
|
|
|
|
def register( |
|
func: Callable[[list[np.ndarray]], NM] |
|
) -> Callable[[list[np.ndarray]], NM]: |
|
metric_registry.append(func) |
|
return func |
|
|
|
|
|
@register |
|
def basic(data: list[np.ndarray]) -> NumMap: |
|
catted = np.concatenate(data) |
|
return { |
|
"Token Count": len(catted), |
|
"Line Count": len(data), |
|
"Tokens per Line": len(np.concatenate(data)) / len(data), |
|
"Tokens per Line SD": float(np.std([len(x) for x in data])), |
|
"Unique Tokens": len(np.unique(catted)), |
|
"Unique Lines": len({hash(l.data.tobytes()) for l in data}), |
|
} |
|
|
|
|
|
@register |
|
def entropy_1gram(data: list[np.ndarray]) -> NumMap: |
|
catted = np.concatenate(data) |
|
counts = np.unique(catted, return_counts=True)[1] |
|
normed = counts / counts.sum() |
|
ent = -(normed * np.log2(normed)).sum() |
|
return { |
|
"1-gram Entropy": ent, |
|
"1-gram Normalized Entropy": ent / np.log2(len(counts)), |
|
} |
|
|
|
|
|
@register |
|
def conditional_entropy_2gram(data: list[np.ndarray]) -> NumMap: |
|
windows = [np.lib.stride_tricks.sliding_window_view(x, (2,), axis=-1) for x in data] |
|
catted = np.concatenate(windows) |
|
counts = np.unique(catted, axis=0, return_counts=True)[1] |
|
normed = counts / counts.sum() |
|
ent = -(normed * np.log2(normed)).sum() |
|
return { |
|
"2-gram Entropy": ent, |
|
"2-gram Conditional Entropy": ent - entropy_1gram(data)["1-gram Entropy"], |
|
} |
|
|
|
|
|
@register |
|
def entropy_per_line(data: list[np.ndarray]) -> NumMap: |
|
catted = np.concatenate(data) |
|
unique_values, counts_dense = np.unique(catted, return_counts=True) |
|
counts = np.zeros(np.max(unique_values) + 1, dtype=float) |
|
counts[unique_values] = counts_dense |
|
|
|
counts += 1e-10 |
|
logged = np.log2(counts / counts.sum()) |
|
bpm = -np.mean([logged[msg].sum() for msg in data]) |
|
return {"Entropy per Line": bpm} |
|
|
|
|
|
@register |
|
def end_of_sentence(data: list[np.ndarray]) -> NumMap: |
|
"""Detect if end-of-sentence token present.""" |
|
candidates = {l[-1] for l in data} |
|
if len(candidates) == 1: |
|
c = list(candidates)[0] |
|
|
|
eos_only_at_end = lambda x: all(x[:-1] != c) |
|
all_eos_rightward = lambda x: all( |
|
(x[i] != c) or all(x[i:] == c) for i in range(len(x)) |
|
) |
|
eos_present = all(eos_only_at_end(x) or all_eos_rightward(x) for x in data) |
|
|
|
same_length = len({len(l) for l in data}) == 1 |
|
padding_exists = any(any(x[:-1] == c) for x in data) |
|
eos_padding = eos_present and same_length and padding_exists |
|
else: |
|
eos_present = False |
|
eos_padding = False |
|
|
|
return { |
|
"EoS Token Present": eos_present, |
|
"EoS Padding": eos_padding, |
|
} |
|
|