|
import json |
|
from pathlib import Path |
|
import logging |
|
from typing import Any |
|
import sys |
|
|
|
import numpy as np |
|
import joblib |
|
from tqdm import tqdm |
|
import pandas as pd |
|
|
|
from .. import util |
|
from .metric import metric_registry |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
def load_data(path: Path) -> list[np.ndarray]: |
|
data = [] |
|
with path.open() as fo: |
|
for line in fo: |
|
row = json.loads(line) |
|
if len(row) == 0: |
|
continue |
|
data.append(np.array(row)) |
|
return data |
|
|
|
|
|
def analyze_data(input_path: Path) -> dict[str, Any] | None: |
|
|
|
name = path_to_name(input_path) |
|
logging.debug(f"Analyzing: {name}") |
|
metrics = None |
|
try: |
|
data = load_data(input_path) |
|
metrics = dict(kv for f in metric_registry for kv in f(data).items()) |
|
metadata_path = input_path.parent / "metadata.json" |
|
with util.update_json(metadata_path) as md: |
|
md["metrics"] = md.get("metrics", {}) |
|
md["metrics"]["analysis"] = metrics |
|
except Exception as e: |
|
logging.warning(f"{name} failed due to {e}") |
|
raise e |
|
finally: |
|
logging.debug(f"Finished: {name}") |
|
return metrics |
|
|
|
|
|
def path_to_name(path: Path) -> str: |
|
comps = list(path.parents[-3:-2]) + list(path.parents[-5::-1]) |
|
return "/".join(x.name for x in comps) |
|
|
|
|
|
def main() -> None: |
|
paths = list(Path("./data").glob("*/data/**/corpus.jsonl")) |
|
funcs = [joblib.delayed(analyze_data)(path) for path in paths] |
|
parallel = joblib.Parallel(n_jobs=-1, return_as="generator")(funcs) |
|
results = list(tqdm(parallel, total=len(funcs))) |
|
results = [x for x in results if x is not None] |
|
|
|
for p, r in zip(paths, results): |
|
r["name"] = path_to_name(p) |
|
|
|
df = pd.DataFrame(results) |
|
df.set_index("name", inplace=True) |
|
df.to_csv("table.csv") |
|
|
|
|
|
def generate_plots(df: pd.DataFrame) -> None: |
|
summary = df.describe() |
|
summary.drop(["count", "mean", "std"], inplace=True) |
|
summary = summary.T |
|
|
|
to_int_rows = ["Unique Tokens", "Unique Lines", "Token Count", "Line Count"] |
|
col_rename = { |
|
"25%": "$25\\%$", |
|
"50%": "$50\\%$", |
|
"75%": "$75\\%$", |
|
} |
|
_summary = pd.DataFrame(columns=summary.columns) |
|
for k in summary.index: |
|
if k in to_int_rows: |
|
fmtr = lambda x: f"${int(x)}$" |
|
else: |
|
fmtr = lambda x: f"${x:.2f}$" |
|
_summary.loc[k] = summary.loc[k].apply(fmtr) |
|
summary = _summary |
|
summary.rename(columns=col_rename, inplace=True) |
|
print(summary) |
|
summary.to_latex("summary.tex", column_format="lrrrrr") |
|
|
|
print(df.corr()) |
|
|