elcc / util /croissant.py
bboldt's picture
Update README.md
036fdbb
raw
history blame
10.5 kB
import json
from pathlib import Path
from textwrap import dedent
import datetime
import functools
import types
import typing
import pydantic
import mlcroissant as mlc # type: ignore
from . import validate
_distribution: list[mlc.FileObject | mlc.FileSet] = [
mlc.FileObject(
id="repo",
name="repo",
content_url="https://huggingface.co/datasets/bboldt/elcc/",
encoding_format="git+https",
sha256="main",
),
mlc.FileSet(
id="system-metadata-files",
name="system-metadata-files",
contained_in=["repo"],
includes=["systems/*/system.json"],
encoding_format="application/json",
),
mlc.FileSet(
id="system-metadata-files-raw",
name="system-metadata-files-raw",
contained_in=["repo"],
includes=["systems/*/system.json"],
encoding_format="text/plain",
),
mlc.FileSet(
id="corpus-metadata-files",
name="corpus-metadata-files",
contained_in=["repo"],
includes=["systems/*/data/*/metadata.json"],
encoding_format="application/json",
),
mlc.FileSet(
id="corpus-metadata-files-raw",
name="corpus-metadata-files-raw",
contained_in=["repo"],
includes=["systems/*/data/*/metadata.json"],
encoding_format="text/plain",
),
]
_metadata = mlc.Metadata(
name="ELCC",
description="ELCC is a collection of emergent language corpora with accompanying metadata and analyses.",
license=["https://creativecommons.org/licenses/by/4.0/"],
url="https://huggingface.co/datasets/bboldt/elcc/",
date_published=datetime.datetime.now(datetime.UTC),
cite_as=dedent(
"""\
@misc{boldt2024elcc,
title = "{ELCC}: the Emergent Language Corpus Collection",
author = "Brendon Boldt and David Mortensen",
year = 2024,
url = "https://huggingface.co/datasets/bboldt/elcc",
}"""
),
version="0.1.0",
keywords=["emergent communication", "emergent language", "corpus"],
distribution=_distribution,
record_sets=[],
)
def insert_corpora(metadata: mlc.Metadata) -> None:
paths = sorted(list(Path("systems").glob("*/data/*/corpus.json")))
for path in paths:
comps = str(path).split("/")
name = f"{comps[-4]}/{comps[-2]}"
metadata.distribution.append(
mlc.FileObject(
id=str(path),
name=str(path),
content_url=str(path),
encoding_format="application/json",
contained_in=["repo"],
)
)
metadata.record_sets.append(
mlc.RecordSet(
id=name,
name=name,
fields=[
mlc.Field(
id=f"{name}/line",
name="line",
data_types=mlc.DataType.INTEGER,
repeated=True,
source=mlc.Source(
file_object=str(path),
extract=mlc.Extract(json_path="$[*]"),
),
),
],
)
)
def make_system_field(base_name: str, typ: type | None) -> mlc.Field:
name = f"system-metadata/{base_name}"
jp = f"$.{base_name}"
type_map = [
(int, mlc.DataType.INTEGER),
(float, mlc.DataType.FLOAT),
(str, mlc.DataType.TEXT),
(bool, mlc.DataType.BOOL),
]
mlc_typ = None
for x, y in type_map:
if isinstance(typ, types.UnionType):
not_none = [x for x in typ.__args__ if not x == type(None)]
if len(typ.__args__) > 2 or len(not_none) != 1:
raise ValueError(f"Cannot handle {typ}")
typ = not_none[0]
elif isinstance(typ, typing._LiteralGenericAlias):
typ = type(typ.__args__[0])
elif base_name == "system.data_source":
typ = str
if issubclass(typ, x):
mlc_typ = y
break
if mlc_typ is None:
mlc_typ = mlc.DataType.TEXT
return mlc.Field(
id=name,
name=base_name,
data_types=[mlc_typ],
source=mlc.Source(
file_set="system-metadata-files",
extract=mlc.Extract(json_path=jp),
),
)
def insert_system_md(metadata: mlc.Metadata) -> None:
metadata.record_sets.append(
mlc.RecordSet(
id="system-metadata-raw",
name="system-metadata-raw",
fields=[
mlc.Field(
id="system-metadata-raw/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="system-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
),
# References always seem to cause conflicting read method errors.
# references={"field": {"@id": "system-metadata/path"}},
),
mlc.Field(
id="system-metadata-raw/raw",
name="raw",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="system-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.content),
),
),
],
)
)
fields = [
mlc.Field(
id="system-metadata/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="system-metadata-files",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
),
),
]
for k0, v0 in validate.SystemMetadata.model_fields.items():
assert v0.annotation is not None
if isinstance(v0.annotation, type) and issubclass(
v0.annotation, pydantic.BaseModel
):
# Only doing one level of nesting for now.
for k1, v1 in v0.annotation.model_fields.items():
if k1 == "variants":
continue
fields.append(make_system_field(f"{k0}.{k1}", v1.annotation))
else:
if k0 == "notes":
continue
fields.append(make_system_field(k0, v0.annotation))
metadata.record_sets.append(
mlc.RecordSet(
id="system-metadata",
name="system-metadata",
fields=fields,
)
)
def insert_corpus_md(metadata: mlc.Metadata) -> None:
metadata.record_sets.append(
mlc.RecordSet(
id="corpus-metadata-raw",
name="corpus-metadata-raw",
fields=[
mlc.Field(
id="corpus-metadata-raw/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="corpus-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
),
# References always seem to cause conflicting read method errors.
# references={"field": {"@id": "corpus-metadata/path"}},
),
mlc.Field(
id="corpus-metadata-raw/raw",
name="raw",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="corpus-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.content),
),
),
],
)
)
exemplar_path = "systems/nav-to-center/data/temperature_10/metadata.json"
with open(exemplar_path) as fo:
exemplar_data = json.load(fo)
fields = [
mlc.Field(
id="corpus-metadata/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="corpus-metadata-files",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
# transforms=[mlc.Transform(regex=r"(....)")],
),
# References always seem to cause conflicting read method errors.
# references={"field": {"@id": "corpus-metadata/path"}},
),
]
items = exemplar_data["metrics"]["analysis"].items()
for k, v in items:
name = f"metrics.analysis.{k}".replace(" ", "_").lower()
if isinstance(v, int):
typ = mlc.DataType.INTEGER
elif isinstance(v, bool):
typ = mlc.DataType.BOOL
else:
typ = mlc.DataType.FLOAT
jp = f'$.metrics.analysis["{k}"]'
fields.append(
mlc.Field(
id=f"corpus-metadata/{name}",
name=name,
data_types=[typ],
source=mlc.Source(
file_set="corpus-metadata-files",
# extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
extract=mlc.Extract(json_path=jp),
),
)
)
metadata.record_sets.append(
mlc.RecordSet(
id="corpus-metadata",
name="corpus-metadata",
fields=fields,
)
)
@functools.cache
def get_metadata() -> mlc.Metadata:
insert_system_md(_metadata)
insert_corpus_md(_metadata)
insert_corpora(_metadata)
return _metadata
def save_metadata() -> None:
metadata = get_metadata()
print(_metadata.issues.report())
with open("croissant.json", "w") as fo:
d = metadata.to_json()
d["datePublished"] = str(d["datePublished"])
json.dump(d, fo, indent=2)
def test() -> None:
dataset = mlc.Dataset(jsonld="croissant.json")
# records = dataset.records(record_set="babyai-sr/GoToObj")
# records = dataset.records(record_set="system-metadata")
# records = dataset.records(record_set="system-metadata-raw")
# records = dataset.records(record_set="corpus-metadata")
records = dataset.records(record_set="corpus-metadata-raw")
for i, x in enumerate(records):
print(i, x)
if i > 10:
break
pass
if __name__ == "__main__":
save_metadata()
# test()