#!/usr/bin/env bash # It may be necessary to start the ray server manually. set -e for cfg_name in {9,21}-player; do cd repo/ # Run training rm -rf log_dir python ../helper.py $cfg_name # Move generic log dir to properly named one (the code does not support # naming the log dir natively). log_dir=log_dir-$cfg_name rm -rf $log_dir mv log_dir $log_dir # Find the last checkpoint ray_dir=$log_dir/ray_results/APPO/*/ checkpoint=$(ls $ray_dir | grep '^checkpoint' | sort -t_ -nk2 | tail -n1) if [[ -z "$checkpoint" ]]; then echo Could not find checkpoint in $ray_dir. exit 1 fi ckpt_iter=$(echo $checkpoint | cut -d_ -f2) # Run the corpus generation code. If a second argument is given to # helper, assume that we are doing corpus genernation. python ../helper.py $cfg_name $ray_dir/$checkpoint/checkpoint-$ckpt_iter cd .. # Make data dir data_dir=../data/$cfg_name mkdir -p $data_dir out_metadata=$data_dir/metadata.json # Copy corpora into data dir cp repo/log_dir/eval/*.jsonl $data_dir # Extract metrics from output system_metrics=$( tail -n100 repo/$ray_dir/result.json |\ jq " select(.iterations_since_restore == $ckpt_iter).custom_metrics | pick(.accord_mean,.win_vil_mean) " ) if [[ -z "$system_metrics" ]]; then echo Failed to extract system metrics exit 1 fi # Update corpus metadata # TODO Put this in common file if ! [[ -s $out_metadata ]]; then echo '{}' >$out_metadata fi jq ".metrics.system=$system_metrics" \ <$out_metadata >$out_metadata.tmp mv $out_metadata{.tmp,} done