from typing import Callable, TypeVar, Mapping import numpy as np metric_registry = [] NumMap = Mapping[str, float | int | bool] NM = TypeVar("NM", bound=NumMap) def register( func: Callable[[list[np.ndarray]], NM] ) -> Callable[[list[np.ndarray]], NM]: metric_registry.append(func) return func @register def basic(data: list[np.ndarray]) -> NumMap: catted = np.concatenate(data) return { "Token Count": len(catted), "Line Count": len(data), "Tokens per Line": len(np.concatenate(data)) / len(data), "Tokens per Line SD": float(np.std([len(x) for x in data])), "Unique Tokens": len(np.unique(catted)), "Unique Lines": len({hash(l.data.tobytes()) for l in data}), } @register def entropy_1gram(data: list[np.ndarray]) -> NumMap: catted = np.concatenate(data) counts = np.unique(catted, return_counts=True)[1] normed = counts / counts.sum() ent = -(normed * np.log2(normed)).sum() return { "1-gram Entropy": ent, "1-gram Normalized Entropy": ent / np.log2(len(counts)), } @register def conditional_entropy_2gram(data: list[np.ndarray]) -> NumMap: windows = [np.lib.stride_tricks.sliding_window_view(x, (2,), axis=-1) for x in data] catted = np.concatenate(windows) counts = np.unique(catted, axis=0, return_counts=True)[1] normed = counts / counts.sum() ent = -(normed * np.log2(normed)).sum() return { "2-gram Entropy": ent, "2-gram Conditional Entropy": ent - entropy_1gram(data)["1-gram Entropy"], } @register def entropy_per_line(data: list[np.ndarray]) -> NumMap: catted = np.concatenate(data) unique_values, counts_dense = np.unique(catted, return_counts=True) counts = np.zeros(np.max(unique_values) + 1, dtype=float) counts[unique_values] = counts_dense # Smoothing counts += 1e-10 logged = np.log2(counts / counts.sum()) bpm = -np.mean([logged[msg].sum() for msg in data]) return {"Entropy per Line": bpm} @register def end_of_sentence(data: list[np.ndarray]) -> NumMap: """Detect if end-of-sentence token present.""" candidates = {l[-1] for l in data} if len(candidates) == 1: c = list(candidates)[0] eos_only_at_end = lambda x: all(x[:-1] != c) all_eos_rightward = lambda x: all( (x[i] != c) or all(x[i:] == c) for i in range(len(x)) ) eos_present = all(eos_only_at_end(x) or all_eos_rightward(x) for x in data) same_length = len({len(l) for l in data}) == 1 padding_exists = any(any(x[:-1] == c) for x in data) eos_padding = eos_present and same_length and padding_exists else: eos_present = False eos_padding = False return { "EoS Token Present": eos_present, "EoS Padding": eos_padding, }