#!/usr/bin/env bash set -e cd emergent_communication_at_scale mkdir -p emcom_datasets/ cd emcom_datasets wget https://storage.googleapis.com/dm_emcom_at_scale_dataset/byol_celeb_a2.tar.gz tar xf byol_celeb_a2.tar.gz wget https://storage.googleapis.com/dm_emcom_at_scale_dataset/byol_imagenet2012.tar.gz tar xf byol_imagenet2012.tar.gz cd .. cd .. # Python cannot find the CUDA libraries without manually inserting the conad # environment's /lib path into the LD_LIBRARY_PATH CONDA_LIB_DIR=$(which python | sed s,bin/python,lib,) export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+$LD_LIBRARY_PATH:}$CONDA_LIB_DIR # If this is unset, the code will OOM on an 11 GiB card, possibly due to jax # and TensorFlow both preallocating. export XLA_PYTHON_CLIENT_PREALLOCATE=false python helper.py for dir in checkpoint/*/; do target=../data/$(basename $dir) mkdir -p $target cp $dir/{corpus.jsonl,metadata.json} $target done