import json from pathlib import Path from textwrap import dedent import datetime import functools import types import typing import pydantic import mlcroissant as mlc # type: ignore from . import validate _distribution: list[mlc.FileObject | mlc.FileSet] = [ mlc.FileObject( id="repo", name="repo", content_url="https://huggingface.co/datasets/bboldt/elcc/", encoding_format="git+https", sha256="main", ), mlc.FileSet( id="system-metadata-files", name="system-metadata-files", contained_in=["repo"], includes=["systems/*/system.json"], encoding_format="application/json", ), mlc.FileSet( id="system-metadata-files-raw", name="system-metadata-files-raw", contained_in=["repo"], includes=["systems/*/system.json"], encoding_format="text/plain", ), mlc.FileSet( id="corpus-metadata-files", name="corpus-metadata-files", contained_in=["repo"], includes=["systems/*/data/*/metadata.json"], encoding_format="application/json", ), mlc.FileSet( id="corpus-metadata-files-raw", name="corpus-metadata-files-raw", contained_in=["repo"], includes=["systems/*/data/*/metadata.json"], encoding_format="text/plain", ), ] _metadata = mlc.Metadata( name="ELCC", description="ELCC is a collection of emergent language corpora with accompanying metadata and analyses.", license=["https://creativecommons.org/licenses/by/4.0/"], url="https://huggingface.co/datasets/bboldt/elcc/", date_published=datetime.datetime.now(datetime.UTC), cite_as=dedent( """\ @misc{boldt2024elcc, title = "{ELCC}: the Emergent Language Corpus Collection", author = "Brendon Boldt and David Mortensen", year = 2024, url = "https://huggingface.co/datasets/bboldt/elcc", }""" ), version="0.1.0", keywords=["emergent communication", "emergent language", "corpus"], distribution=_distribution, record_sets=[], ) def insert_corpora(metadata: mlc.Metadata) -> None: paths = sorted(list(Path("systems").glob("*/data/*/corpus.json"))) for path in paths: comps = str(path).split("/") name = f"{comps[-4]}/{comps[-2]}" metadata.distribution.append( mlc.FileObject( id=str(path), name=str(path), content_url=str(path), encoding_format="application/json", contained_in=["repo"], ) ) metadata.record_sets.append( mlc.RecordSet( id=name, name=name, fields=[ mlc.Field( id=f"{name}/line", name="line", data_types=mlc.DataType.INTEGER, repeated=True, source=mlc.Source( file_object=str(path), extract=mlc.Extract(json_path="$[*]"), ), ), ], ) ) def make_system_field(base_name: str, typ: type | None) -> mlc.Field: name = f"system-metadata/{base_name}" jp = f"$.{base_name}" type_map = [ (int, mlc.DataType.INTEGER), (float, mlc.DataType.FLOAT), (str, mlc.DataType.TEXT), (bool, mlc.DataType.BOOL), ] mlc_typ = None for x, y in type_map: if isinstance(typ, types.UnionType): not_none = [x for x in typ.__args__ if not x == type(None)] if len(typ.__args__) > 2 or len(not_none) != 1: raise ValueError(f"Cannot handle {typ}") typ = not_none[0] elif isinstance(typ, typing._LiteralGenericAlias): typ = type(typ.__args__[0]) elif base_name == "system.data_source": typ = str if issubclass(typ, x): mlc_typ = y break if mlc_typ is None: mlc_typ = mlc.DataType.TEXT return mlc.Field( id=name, name=base_name, data_types=[mlc_typ], source=mlc.Source( file_set="system-metadata-files", extract=mlc.Extract(json_path=jp), ), ) def insert_system_md(metadata: mlc.Metadata) -> None: metadata.record_sets.append( mlc.RecordSet( id="system-metadata-raw", name="system-metadata-raw", fields=[ mlc.Field( id="system-metadata-raw/path", name="path", data_types=[mlc.DataType.TEXT], source=mlc.Source( file_set="system-metadata-files-raw", extract=mlc.Extract(file_property=mlc.FileProperty.fullpath), ), # References always seem to cause conflicting read method errors. # references={"field": {"@id": "system-metadata/path"}}, ), mlc.Field( id="system-metadata-raw/raw", name="raw", data_types=[mlc.DataType.TEXT], source=mlc.Source( file_set="system-metadata-files-raw", extract=mlc.Extract(file_property=mlc.FileProperty.content), ), ), ], ) ) fields = [ mlc.Field( id="system-metadata/path", name="path", data_types=[mlc.DataType.TEXT], source=mlc.Source( file_set="system-metadata-files", extract=mlc.Extract(file_property=mlc.FileProperty.fullpath), ), ), ] for k0, v0 in validate.SystemMetadata.model_fields.items(): assert v0.annotation is not None if isinstance(v0.annotation, type) and issubclass( v0.annotation, pydantic.BaseModel ): # Only doing one level of nesting for now. for k1, v1 in v0.annotation.model_fields.items(): if k1 == "variants": continue fields.append(make_system_field(f"{k0}.{k1}", v1.annotation)) else: if k0 == "notes": continue fields.append(make_system_field(k0, v0.annotation)) metadata.record_sets.append( mlc.RecordSet( id="system-metadata", name="system-metadata", fields=fields, ) ) def insert_corpus_md(metadata: mlc.Metadata) -> None: metadata.record_sets.append( mlc.RecordSet( id="corpus-metadata-raw", name="corpus-metadata-raw", fields=[ mlc.Field( id="corpus-metadata-raw/path", name="path", data_types=[mlc.DataType.TEXT], source=mlc.Source( file_set="corpus-metadata-files-raw", extract=mlc.Extract(file_property=mlc.FileProperty.fullpath), ), # References always seem to cause conflicting read method errors. # references={"field": {"@id": "corpus-metadata/path"}}, ), mlc.Field( id="corpus-metadata-raw/raw", name="raw", data_types=[mlc.DataType.TEXT], source=mlc.Source( file_set="corpus-metadata-files-raw", extract=mlc.Extract(file_property=mlc.FileProperty.content), ), ), ], ) ) exemplar_path = "systems/nav-to-center/data/temperature_10/metadata.json" with open(exemplar_path) as fo: exemplar_data = json.load(fo) fields = [ mlc.Field( id="corpus-metadata/path", name="path", data_types=[mlc.DataType.TEXT], source=mlc.Source( file_set="corpus-metadata-files", extract=mlc.Extract(file_property=mlc.FileProperty.fullpath), # transforms=[mlc.Transform(regex=r"(....)")], ), # References always seem to cause conflicting read method errors. # references={"field": {"@id": "corpus-metadata/path"}}, ), ] items = exemplar_data["metrics"]["analysis"].items() for k, v in items: name = f"metrics.analysis.{k}".replace(" ", "_").lower() if isinstance(v, int): typ = mlc.DataType.INTEGER elif isinstance(v, bool): typ = mlc.DataType.BOOL else: typ = mlc.DataType.FLOAT jp = f'$.metrics.analysis["{k}"]' fields.append( mlc.Field( id=f"corpus-metadata/{name}", name=name, data_types=[typ], source=mlc.Source( file_set="corpus-metadata-files", # extract=mlc.Extract(file_property=mlc.FileProperty.fullpath), extract=mlc.Extract(json_path=jp), ), ) ) metadata.record_sets.append( mlc.RecordSet( id="corpus-metadata", name="corpus-metadata", fields=fields, ) ) @functools.cache def get_metadata() -> mlc.Metadata: insert_system_md(_metadata) insert_corpus_md(_metadata) insert_corpora(_metadata) return _metadata def save_metadata() -> None: metadata = get_metadata() print(_metadata.issues.report()) with open("croissant.json", "w") as fo: d = metadata.to_json() d["datePublished"] = str(d["datePublished"]) json.dump(d, fo, indent=2) def test() -> None: dataset = mlc.Dataset(jsonld="croissant.json") # records = dataset.records(record_set="babyai-sr/GoToObj") # records = dataset.records(record_set="system-metadata") # records = dataset.records(record_set="system-metadata-raw") # records = dataset.records(record_set="corpus-metadata") records = dataset.records(record_set="corpus-metadata-raw") for i, x in enumerate(records): print(i, x) if i > 10: break pass if __name__ == "__main__": save_metadata() # test()