privy / privy.py
beki's picture
Update privy.py
5ad9628
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
_DESCRIPTION="This labelled PII dataset consists of protocol traces (JSON, SQL (PostgreSQL, MySQL), HTML, and XML) generated from OpenAPI specifications and includes 60+ PII types."
_CITATION="""
@online{WinNT,
author = {Benjamin Kilimnik},
title = {{Privy} Synthetic PII Protocol Trace Dataset},
year = 2022,
url = {https://huggingface.co/datasets/beki/privy},
}
"""
_HOMEPAGE = "https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy/privy"
_LICENSE = "MIT"
_URL = "https://huggingface.co/datasets/beki/privy/resolve/main/privy-dataset.zip"
class Privy(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="small", version=VERSION, description="Privy small"),
datasets.BuilderConfig(name="large", version=VERSION, description="Privy large"),
]
DEFAULT_CONFIG_NAME = "small"
def _info(self):
if self.config.name == "large":
features = datasets.Features(
{
"full_text": datasets.Value("string"),
"masked": datasets.Value("string"),
"spans": datasets.Sequence(datasets.Value("string")),
"tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-O",
"I-O",
"L-O",
"U-O",
"B-PERSON",
"I-PERSON",
"L-PERSON",
"U-PERSON",
"B-LOCATION",
"I-LOCATION",
"L-LOCATION",
"U-LOCATION",
"B-ORGANIZATION",
"I-ORGANIZATION",
"L-ORGANIZATION",
"U-ORGANIZATION",
"B-NRP",
"I-NRP",
"L-NRP",
"U-NRP",
"B-DATE_TIME",
"I-DATE_TIME",
"L-DATE_TIME",
"U-DATE_TIME",
"B-CREDIT_CARD",
"I-CREDIT_CARD",
"L-CREDIT_CARD",
"U-CREDIT_CARD",
"B-URL",
"I-URL",
"L-URL",
"U-URL",
"B-IBAN_CODE",
"I-IBAN_CODE",
"L-IBAN_CODE",
"U-IBAN_CODE",
"B-US_BANK_NUMBER",
"I-US_BANK_NUMBER",
"L-US_BANK_NUMBER",
"U-US_BANK_NUMBER",
"B-PHONE_NUMBER",
"I-PHONE_NUMBER",
"L-PHONE_NUMBER",
"U-PHONE_NUMBER",
"B-US_SSN",
"I-US_SSN",
"L-US_SSN",
"U-US_SSN",
"B-US_PASSPORT",
"I-US_PASSPORT",
"L-US_PASSPORT",
"U-US_PASSPORT",
"B-US_DRIVER_LICENSE",
"I-US_DRIVER_LICENSE",
"L-US_DRIVER_LICENSE",
"U-US_DRIVER_LICENSE",
"B-US_LICENSE_PLATE",
"I-US_LICENSE_PLATE",
"L-US_LICENSE_PLATE",
"U-US_LICENSE_PLATE",
"B-IP_ADDRESS",
"I-IP_ADDRESS",
"L-IP_ADDRESS",
"U-IP_ADDRESS",
"B-US_ITIN",
"I-US_ITIN",
"L-US_ITIN",
"U-US_ITIN",
"B-EMAIL_ADDRESS",
"I-EMAIL_ADDRESS",
"L-EMAIL_ADDRESS",
"U-EMAIL_ADDRESS",
"B-TITLE",
"I-TITLE",
"L-TITLE",
"U-TITLE",
"B-COORDINATE",
"I-COORDINATE",
"L-COORDINATE",
"U-COORDINATE",
"B-IMEI",
"I-IMEI",
"L-IMEI",
"U-IMEI",
"B-PASSWORD",
"I-PASSWORD",
"L-PASSWORD",
"U-PASSWORD",
"B-LICENSE_PLATE",
"I-LICENSE_PLATE",
"L-LICENSE_PLATE",
"U-LICENSE_PLATE",
"B-CURRENCY",
"I-CURRENCY",
"L-CURRENCY",
"U-CURRENCY",
"B-FINANCIAL",
"I-FINANCIAL",
"L-FINANCIAL",
"U-FINANCIAL",
"B-ROUTING_NUMBER",
"I-ROUTING_NUMBER",
"L-ROUTING_NUMBER",
"U-ROUTING_NUMBER",
"B-SWIFT_CODE",
"I-SWIFT_CODE",
"L-SWIFT_CODE",
"U-SWIFT_CODE",
"B-MAC_ADDRESS",
"I-MAC_ADDRESS",
"L-MAC_ADDRESS",
"U-MAC_ADDRESS",
"B-AGE",
"I-AGE",
"L-AGE",
"U-AGE",
]
)
),
"tokens": datasets.Sequence(datasets.Value("string")),
"template_id": datasets.Value("int32"),
"metadata": datasets.Value("int32"),
}
)
if self.config.name == "small":
features = datasets.Features(
{
"full_text": datasets.Value("string"),
"masked": datasets.Value("string"),
"spans": datasets.Sequence(datasets.Value("string")),
"tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-O",
"I-O",
"L-O",
"U-O",
"B-PER",
"I-PER",
"L-PER",
"U-PER",
"B-LOC",
"I-LOC",
"L-LOC",
"U-LOC",
"B-ORG",
"I-ORG",
"L-ORG",
"U-ORG",
"B-NRP",
"I-NRP",
"L-NRP",
"U-NRP",
"B-DATE_TIME",
"I-DATE_TIME",
"L-DATE_TIME",
"U-DATE_TIME",
"B-CREDIT_CARD",
"I-CREDIT_CARD",
"L-CREDIT_CARD",
"U-CREDIT_CARD",
"B-URL",
"I-URL",
"L-URL",
"U-URL",
"B-IBAN_CODE",
"I-IBAN_CODE",
"L-IBAN_CODE",
"U-IBAN_CODE",
"B-US_BANK_NUMBER",
"I-US_BANK_NUMBER",
"L-US_BANK_NUMBER",
"U-US_BANK_NUMBER",
"B-PHONE_NUMBER",
"I-PHONE_NUMBER",
"L-PHONE_NUMBER",
"U-PHONE_NUMBER",
"B-US_SSN",
"I-US_SSN",
"L-US_SSN",
"U-US_SSN",
"B-US_PASSPORT",
"I-US_PASSPORT",
"L-US_PASSPORT",
"U-US_PASSPORT",
"B-US_DRIVER_LICENSE",
"I-US_DRIVER_LICENSE",
"L-US_DRIVER_LICENSE",
"U-US_DRIVER_LICENSE",
"B-US_LICENSE_PLATE",
"I-US_LICENSE_PLATE",
"L-US_LICENSE_PLATE",
"U-US_LICENSE_PLATE",
"B-IP_ADDRESS",
"I-IP_ADDRESS",
"L-IP_ADDRESS",
"U-IP_ADDRESS",
"B-US_ITIN",
"I-US_ITIN",
"L-US_ITIN",
"U-US_ITIN",
"B-EMAIL_ADDRESS",
"I-EMAIL_ADDRESS",
"L-EMAIL_ADDRESS",
"U-EMAIL_ADDRESS",
"B-TITLE",
"I-TITLE",
"L-TITLE",
"U-TITLE",
"B-COORDINATE",
"I-COORDINATE",
"L-COORDINATE",
"U-COORDINATE",
"B-IMEI",
"I-IMEI",
"L-IMEI",
"U-IMEI",
"B-PASSWORD",
"I-PASSWORD",
"L-PASSWORD",
"U-PASSWORD",
"B-LICENSE_PLATE",
"I-LICENSE_PLATE",
"L-LICENSE_PLATE",
"U-LICENSE_PLATE",
"B-CURRENCY",
"I-CURRENCY",
"L-CURRENCY",
"U-CURRENCY",
"B-FINANCIAL",
"I-FINANCIAL",
"L-FINANCIAL",
"U-FINANCIAL",
"B-ROUTING_NUMBER",
"I-ROUTING_NUMBER",
"L-ROUTING_NUMBER",
"U-ROUTING_NUMBER",
"B-SWIFT_CODE",
"I-SWIFT_CODE",
"L-SWIFT_CODE",
"U-SWIFT_CODE",
"B-MAC_ADDRESS",
"I-MAC_ADDRESS",
"L-MAC_ADDRESS",
"U-MAC_ADDRESS",
"B-AGE",
"I-AGE",
"L-AGE",
"U-AGE",
]
)
),
"tokens": datasets.Sequence(datasets.Value("string")),
"template_id": datasets.Value("int32"),
"metadata": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
size = "small"
if self.config.name == "large": # This is the name of the configuration selected in BUILDER_CONFIGS above
size = "large"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, f"train-{size}.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, f"dev-{size}.json"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, f"test-{size}.json"),
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
dataset = json.load(f)
for key, row in enumerate(dataset):
# Yields examples as (key, example) tuples
yield key, {
"tokens": row["tokens"],
"tags": row["tags"],
"full_text": row["full_text"],
"spans": row["spans"],
"masked": row["masked"],
"template_id": row["template_id"],
"metadata": row["metadata"],
}