import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ ALBUQUERQUE2022,author="Albuquerque, Hidelberg O. and Costa, Rosimeire and Silvestre, Gabriel and Souza, Ellen and da Silva, N{\'a}dia F. F. and Vit{\'o}rio, Douglas and Moriyama, Gyovana and Martins, Lucas and Soezima, Luiza and Nunes, Augusto and Siqueira, Felipe and Tarrega, Jo{\~a}o P. and Beinotti, Joao V. and Dias, Marcio and Silva, Matheus and Gardini, Miguel and Silva, Vinicius and de Carvalho, Andr{\'e} C. P. L. F. and Oliveira, Adriano L. I.", title="{UlyssesNER-Br}: A Corpus of Brazilian Legislative Documents for Named Entity Recognition", booktitle="Computational Processing of the Portuguese Language", year="2022", pages="3--14",@inproceedings{inPress, PROPOR2022} """ _DESCRIPTION = """ PL-corpus is a Portuguese language dataset for named entity recognition applied to legislative documents. Its parte of the UlyssesBR-corpus, and consists entirely of manually annotated public bills texts (projetos de leis) and contains tags for persons, locations, date entities, organizations, legal foundation and bills. """ _HOMEPAGE = "https://github.com/Convenio-Camara-dos-Deputados/ulyssesner-br-propor" _URL = "https://raw.githubusercontent.com/bergoliveira/assessment-of-deep-learning-models-icann/main/pl-corpus/" _TRAINING_FILE = "train.conll" _DEV_FILE = "dev.conll" _TEST_FILE = "test.conll" class PlCorpus(datasets.GeneratorBasedBuilder): """pL-corpus dataset""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="pl-corpus", version=VERSION, description="PL-corpus dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-ORGANIZACAO", "I-ORGANIZACAO", "B-PESSOA", "I-PESSOA", "B-DATA", "I-DATA", "B-LOCAL", "I-LOCAL", "B-FUNDAMENTO", "I-FUNDAMENTO", "B-PRODUTODELEI", "I-PRODUTODELEI", "B-EVENTO", "I-EVENTO", ] ) ), } ), supervised_keys=None, homepage="https://github.com/Convenio-Camara-dos-Deputados/ulyssesner-br-propor", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: if line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: splits = line.split(" ") tokens.append(splits[0]) ner_tags.append(splits[1].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }