Datasets:
File size: 7,144 Bytes
2e1ba11 78e98e3 2e1ba11 f5f8cbd 2e1ba11 b7cd226 2e1ba11 b7cd226 007295a 2e1ba11 b7cd226 2e1ba11 c42aca6 2e1ba11 18d73e8 2e1ba11 18d73e8 2e1ba11 9b1ad67 0e0595b 9b1ad67 0e0595b 2e1ba11 8221054 2e1ba11 fb4e7a0 2e1ba11 9b1ad67 2e1ba11 9b1ad67 2e1ba11 b03a838 7642729 2e1ba11 9b1ad67 2e1ba11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- es
license:
- odc-by
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
- 1M<n<10M
- 10M<n<100M
- 100M<n<1B
source_datasets:
- mc4
- bertin-project/mc4-sampling
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
pretty_name: mC4-es-sampled
---
# Dataset Card for mC4-es-sampled
## Table of Contents
- [Dataset Card for mC4-es-sampled](#dataset-card-for-mc4-es-sampled)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://huggingface.co/datasets/allenai/c4
- **Paper:** https://arxiv.org/abs/1910.10683
### Dataset Summary
This dataset is the result of applying perplexity sampling to the Spanish portion of mC4 using [`mc4-sampling`](https://huggingface.co/datasets/bertin-project/mc4-sampling/). Please, refer to [BERTIN Project](https://huggingface.co/bertin-project/bertin-roberta-base-spanish).
You can load the mC4 Spanish sampled like this:
```python
from datasets import load_dataset
for config in ("random", "stepwise", "gaussian"):
mc4es = load_dataset(
"bertin-project/mc4-es-sampled",
config,
split="train",
streaming=True
).shuffle(buffer_size=1000)
for sample in mc4es:
print(config, sample)
break
```
Alternatively, you can bypass the `datasets` library and quickly download (\~1.5hrs, depending on connection) a specific config in the same order used to pre-train BERTIN models in a massive (\~200GB) JSON-lines files:
```python
import io
import gzip
import json
import sys
import requests
from tqdm import tqdm
_DATA_URL_TRAIN = "https://huggingface.co/datasets/bertin-project/mc4-es-sampled/resolve/main/mc4-es-train-50M-{config}-shard-{index:04d}-of-{n_shards:04d}.json.gz"
def main(config="stepwise"):
data_urls = [
_DATA_URL_TRAIN.format(
config=config,
index=index + 1,
n_shards=1024,
)
for index in range(1024)
]
with open(f"mc4-es-train-50M-{config}.jsonl", "w") as f:
for dara_url in tqdm(data_urls):
response = requests.get(dara_url)
bio = io.BytesIO(response.content)
with gzip.open(bio, "rt", encoding="utf8") as g:
for line in g:
json_line = json.loads(line.strip())
f.write(json.dumps(json_line) + "\
")
if __name__ == "__main__":
main(sys.argv[1])
```
### Supported Tasks and Leaderboards
mC4-es-sampled is mainly intended for reproducibility purposes of the BERTIN Project and to pretrain language models and word representations on medium budgets.
### Languages
The dataset only supports the Spanish language.
## Dataset Structure
### Data Instances
An example form the `Gaussian` config:
```python
{'timestamp': '2018-10-20T06:20:53Z', 'text': 'Ortho HyaluroTop 200 aporta el col谩geno y 谩cido hialur贸nico que, con la edad, se producen en menor cantidad. La vitamina C promueve la producci贸n de col谩geno para mantener la piel sana y protege a las c茅lulas contra los radicales libres causados ??por la contaminaci贸n ambiental y los rayos UV.', 'url': 'https://www.farmaciagaleno.com/orthonat-hyalurotop-200-30-capsulas'}
```
### Data Fields
The data have several fields:
- `url`: url of the source as a string
- `text`: text content as a string
- `timestamp`: timestamp as a string
### Data Splits
The resulting mC4 subsets for Spanish are reported in this table:
| config | train |
|:---------|:--------|
| stepwise | 50M |
| random | 50M |
| gaussian | 50M |
The split `validation` is exactly the same as the original `mc4` dataset.
## Dataset Creation
### Curation Rationale
This dataset was built from the original [`mc4`](https://huggingface.co/datasets/mc4) by applying perplexity-sampling via [`mc4-sampling`](https://huggingface.co/datasets/bertin-project/mc4-sampling) for Spanish.
## Additional Information
### Dataset Curators
Original data by [Common Crawl](https://commoncrawl.org/).
### Licensing Information
AllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset.
### Citation Information
To cite this dataset ([arXiv](https://arxiv.org/abs/2207.06814)):
```bibtex
@article{BERTIN,
author = {Javier De la Rosa y Eduardo G. Ponferrada y Manu Romero y Paulo Villegas y Pablo Gonz谩lez de Prado Salas y Mar铆a Grandury},
title = {{BERTIN}: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling},
journal = {Procesamiento del Lenguaje Natural},
volume = {68},
number = {0},
year = {2022},
keywords = {},
abstract = {The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pretraining sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name perplexity sampling that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget.},
issn = {1989-7553},
url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403},
pages = {13--23}
}
```
If you use this dataset, we would love to hear about it! Reach out on twitter, GitHub, Discord, or shoot us an email.
To cite the original `mc4` dataset:
```
@article{2019t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {arXiv e-prints},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.10683},
}
```
### Contributions
Dataset contributed by [@versae](https://github.com/versae) for BERTIN Project.
Thanks to [@dirkgr](https://github.com/dirkgr) and [@lhoestq](https://github.com/lhoestq) for adding the original mC4 dataset.
|