beyondzero commited on
Commit
f1a39c3
·
verified ·
1 Parent(s): e6b77ae

Create preprocess_marc_ja.py

Browse files
Files changed (1) hide show
  1. preprocess_marc_ja.py +261 -0
preprocess_marc_ja.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This code is licensed under CC-BY-4.0 from the original work by shunk031.
3
+ The code is adapted from https://huggingface.co/datasets/shunk031/JGLUE/blob/main/JGLUE.py
4
+ with minor modifications to the code structure.
5
+ This codebase provides pre-processing functionality for the MARC-ja dataset in the Japanese GLUE benchmark.
6
+ The original code can be found at https://github.com/yahoojapan/JGLUE/blob/main/preprocess/marc-ja/scripts/marc-ja.py.
7
+ """
8
+
9
+ import random
10
+ import warnings
11
+ from typing import Dict, List, Optional, Union
12
+ import string
13
+
14
+ import datasets as ds
15
+ import pandas as pd
16
+
17
+
18
+ class MarcJaConfig(ds.BuilderConfig):
19
+ def __init__(
20
+ self,
21
+ name: str = "MARC-ja",
22
+ is_han_to_zen: bool = False,
23
+ max_instance_num: Optional[int] = None,
24
+ max_char_length: int = 500,
25
+ remove_netural: bool = True,
26
+ train_ratio: float = 0.94,
27
+ val_ratio: float = 0.03,
28
+ test_ratio: float = 0.03,
29
+ output_testset: bool = False,
30
+ filter_review_id_list_valid: bool = True,
31
+ label_conv_review_id_list_valid: bool = True,
32
+ version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
33
+ data_dir: Optional[str] = None,
34
+ data_files: Optional[ds.data_files.DataFilesDict] = None,
35
+ description: Optional[str] = None,
36
+ ) -> None:
37
+ super().__init__(
38
+ name=name,
39
+ version=version,
40
+ data_dir=data_dir,
41
+ data_files=data_files,
42
+ description=description,
43
+ )
44
+ if train_ratio + val_ratio + test_ratio != 1.0:
45
+ raise ValueError(
46
+ "train_ratio + val_ratio + test_ratio should be 1.0, "
47
+ f"but got {train_ratio} + {val_ratio} + {test_ratio} = {train_ratio + val_ratio + test_ratio}"
48
+ )
49
+
50
+ self.train_ratio = train_ratio
51
+ self.val_ratio = val_ratio
52
+ self.test_ratio = test_ratio
53
+
54
+ self.is_han_to_zen = is_han_to_zen
55
+ self.max_instance_num = max_instance_num
56
+ self.max_char_length = max_char_length
57
+ self.remove_netural = remove_netural
58
+ self.output_testset = output_testset
59
+
60
+ self.filter_review_id_list_valid = filter_review_id_list_valid
61
+ self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
62
+
63
+
64
+ def get_label(rating: int, remove_netural: bool = False) -> Optional[str]:
65
+ if rating >= 4:
66
+ return "positive"
67
+ elif rating <= 2:
68
+ return "negative"
69
+ else:
70
+ if remove_netural:
71
+ return None
72
+ else:
73
+ return "neutral"
74
+
75
+
76
+ def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
77
+ ascii_letters = set(string.printable)
78
+ rate = sum(c in ascii_letters for c in text) / len(text)
79
+ return rate >= threshold
80
+
81
+
82
+ def shuffle_dataframe(df: pd.DataFrame) -> pd.DataFrame:
83
+ instances = df.to_dict(orient="records")
84
+ random.seed(1)
85
+ random.shuffle(instances)
86
+ return pd.DataFrame(instances)
87
+
88
+
89
+ def get_filter_review_id_list(
90
+ filter_review_id_list_paths: Dict[str, str],
91
+ ) -> Dict[str, List[str]]:
92
+ filter_review_id_list_valid = filter_review_id_list_paths.get("valid")
93
+ filter_review_id_list_test = filter_review_id_list_paths.get("test")
94
+
95
+ filter_review_id_list = {}
96
+
97
+ if filter_review_id_list_valid is not None:
98
+ with open(filter_review_id_list_valid, "r") as rf:
99
+ filter_review_id_list["valid"] = [line.rstrip() for line in rf]
100
+
101
+ if filter_review_id_list_test is not None:
102
+ with open(filter_review_id_list_test, "r") as rf:
103
+ filter_review_id_list["test"] = [line.rstrip() for line in rf]
104
+
105
+ return filter_review_id_list
106
+
107
+
108
+ def get_label_conv_review_id_list(
109
+ label_conv_review_id_list_paths: Dict[str, str],
110
+ ) -> Dict[str, Dict[str, str]]:
111
+ import csv
112
+
113
+ label_conv_review_id_list_valid = label_conv_review_id_list_paths.get("valid")
114
+ label_conv_review_id_list_test = label_conv_review_id_list_paths.get("test")
115
+
116
+ label_conv_review_id_list: Dict[str, Dict[str, str]] = {}
117
+
118
+ if label_conv_review_id_list_valid is not None:
119
+ with open(label_conv_review_id_list_valid, "r", encoding="utf-8") as rf:
120
+ label_conv_review_id_list["valid"] = {row[0]: row[1] for row in csv.reader(rf)}
121
+
122
+ if label_conv_review_id_list_test is not None:
123
+ with open(label_conv_review_id_list_test, "r", encoding="utf-8") as rf:
124
+ label_conv_review_id_list["test"] = {row[0]: row[1] for row in csv.reader(rf)}
125
+
126
+ return label_conv_review_id_list
127
+
128
+
129
+ def output_data(
130
+ df: pd.DataFrame,
131
+ train_ratio: float,
132
+ val_ratio: float,
133
+ test_ratio: float,
134
+ output_testset: bool,
135
+ filter_review_id_list_paths: Dict[str, str],
136
+ label_conv_review_id_list_paths: Dict[str, str],
137
+ ) -> Dict[str, pd.DataFrame]:
138
+ instance_num = len(df)
139
+ split_dfs: Dict[str, pd.DataFrame] = {}
140
+ length1 = int(instance_num * train_ratio)
141
+ split_dfs["train"] = df.iloc[:length1]
142
+
143
+ length2 = int(instance_num * (train_ratio + val_ratio))
144
+ split_dfs["valid"] = df.iloc[length1:length2]
145
+ split_dfs["test"] = df.iloc[length2:]
146
+
147
+ filter_review_id_list = get_filter_review_id_list(
148
+ filter_review_id_list_paths=filter_review_id_list_paths,
149
+ )
150
+ label_conv_review_id_list = get_label_conv_review_id_list(
151
+ label_conv_review_id_list_paths=label_conv_review_id_list_paths,
152
+ )
153
+
154
+ for eval_type in ("valid", "test"):
155
+ if filter_review_id_list.get(eval_type):
156
+ df = split_dfs[eval_type]
157
+ df = df[~df["review_id"].isin(filter_review_id_list[eval_type])]
158
+ split_dfs[eval_type] = df
159
+
160
+ for eval_type in ("valid", "test"):
161
+ if label_conv_review_id_list.get(eval_type):
162
+ df = split_dfs[eval_type]
163
+ df = df.assign(converted_label=df["review_id"].map(label_conv_review_id_list["valid"]))
164
+ df = df.assign(
165
+ label=df[["label", "converted_label"]].apply(
166
+ lambda xs: xs["label"] if pd.isnull(xs["converted_label"]) else xs["converted_label"],
167
+ axis=1,
168
+ )
169
+ )
170
+ df = df.drop(columns=["converted_label"])
171
+ split_dfs[eval_type] = df
172
+
173
+ return {
174
+ "train": split_dfs["train"],
175
+ "valid": split_dfs["valid"],
176
+ }
177
+
178
+
179
+ def preprocess_marc_ja(
180
+ config: MarcJaConfig,
181
+ data_file_path: str,
182
+ filter_review_id_list_paths: Dict[str, str],
183
+ label_conv_review_id_list_paths: Dict[str, str],
184
+ ) -> Dict[str, pd.DataFrame]:
185
+ try:
186
+ import mojimoji
187
+
188
+ def han_to_zen(text: str) -> str:
189
+ return mojimoji.han_to_zen(text)
190
+
191
+ except ImportError:
192
+ warnings.warn(
193
+ "can't import `mojimoji`, failing back to method that do nothing. "
194
+ "We recommend running `pip install mojimoji` to reproduce the original preprocessing.",
195
+ UserWarning,
196
+ )
197
+
198
+ def han_to_zen(text: str) -> str:
199
+ return text
200
+
201
+ try:
202
+ from bs4 import BeautifulSoup
203
+
204
+ def cleanup_text(text: str) -> str:
205
+ return BeautifulSoup(text, "html.parser").get_text()
206
+
207
+ except ImportError:
208
+ warnings.warn(
209
+ "can't import `beautifulsoup4`, failing back to method that do nothing."
210
+ "We recommend running `pip install beautifulsoup4` to reproduce the original preprocessing.",
211
+ UserWarning,
212
+ )
213
+
214
+ def cleanup_text(text: str) -> str:
215
+ return text
216
+
217
+ from tqdm import tqdm
218
+
219
+ df = pd.read_csv(data_file_path, delimiter="\t")
220
+ df = df[["review_body", "star_rating", "review_id"]]
221
+
222
+ # rename columns
223
+ df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
224
+
225
+ # convert the rating to label
226
+ tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label")
227
+ df = df.assign(label=df["rating"].progress_apply(lambda rating: get_label(rating, config.remove_netural)))
228
+
229
+ # remove rows where the label is None
230
+ df = df[~df["label"].isnull()]
231
+
232
+ # remove html tags from the text
233
+ tqdm.pandas(dynamic_ncols=True, desc="Remove html tags from the text")
234
+ df = df.assign(text=df["text"].progress_apply(cleanup_text))
235
+
236
+ # filter by ascii rate
237
+ tqdm.pandas(dynamic_ncols=True, desc="Filter by ascii rate")
238
+ df = df[~df["text"].progress_apply(is_filtered_by_ascii_rate)]
239
+
240
+ if config.max_char_length is not None:
241
+ df = df[df["text"].str.len() <= config.max_char_length]
242
+
243
+ if config.is_han_to_zen:
244
+ df = df.assign(text=df["text"].apply(han_to_zen))
245
+
246
+ df = df[["text", "label", "review_id"]]
247
+ df = df.rename(columns={"text": "sentence"})
248
+
249
+ # shuffle dataset
250
+ df = shuffle_dataframe(df)
251
+
252
+ split_dfs = output_data(
253
+ df=df,
254
+ train_ratio=config.train_ratio,
255
+ val_ratio=config.val_ratio,
256
+ test_ratio=config.test_ratio,
257
+ output_testset=config.output_testset,
258
+ filter_review_id_list_paths=filter_review_id_list_paths,
259
+ label_conv_review_id_list_paths=label_conv_review_id_list_paths,
260
+ )
261
+ return split_dfs