Delete pythia-training-metrics.py
Browse files- pythia-training-metrics.py +0 -159
pythia-training-metrics.py
DELETED
@@ -1,159 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
import pickle
|
3 |
-
|
4 |
-
_DESCRIPTION = """\
|
5 |
-
Dataset for storing training metrics of pythia models
|
6 |
-
"""
|
7 |
-
|
8 |
-
class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
9 |
-
|
10 |
-
MODEL_SIZES = [
|
11 |
-
"14m"
|
12 |
-
]
|
13 |
-
|
14 |
-
_GRADIENTS_DESCRIPTION = """\
|
15 |
-
Dataset for storing gradients of pythia models of the requested model size
|
16 |
-
"""
|
17 |
-
|
18 |
-
_WEIGHTS_DESCRIPTION = """\
|
19 |
-
Dataset for storing weights of pythia models of the requested model size
|
20 |
-
"""
|
21 |
-
|
22 |
-
_WEIGHTS_MINI_DESCRIPTION = """\
|
23 |
-
Dataset for storing weights of pythia models (minimizes the amount of gradients per
|
24 |
-
checkpoint to only 2) of the requested model size
|
25 |
-
"""
|
26 |
-
|
27 |
-
_ACTIVATIONS_DESCRIPTION = """\
|
28 |
-
Dataset for storing activations of pythia models of the requested model size
|
29 |
-
"""
|
30 |
-
|
31 |
-
BUILDER_CONFIGS = []
|
32 |
-
for model_size in MODEL_SIZES:
|
33 |
-
BUILDER_CONFIGS.extend([
|
34 |
-
datasets.BuilderConfig(
|
35 |
-
name=f"{model_size}__gradients",
|
36 |
-
description=_WEIGHTS_DESCRIPTION,
|
37 |
-
version="1.0.0",
|
38 |
-
),
|
39 |
-
datasets.BuilderConfig(
|
40 |
-
name=f"{model_size}__gradients_mini",
|
41 |
-
description=_WEIGHTS_MINI_DESCRIPTION,
|
42 |
-
version="1.0.0",
|
43 |
-
),
|
44 |
-
datasets.BuilderConfig(
|
45 |
-
name=f"{model_size}__activations",
|
46 |
-
description=_ACTIVATIONS_DESCRIPTION,
|
47 |
-
version="1.0.0",
|
48 |
-
),
|
49 |
-
datasets.BuilderConfig(
|
50 |
-
name=f"{model_size}__weights",
|
51 |
-
description=_WEIGHTS_DESCRIPTION,
|
52 |
-
version="1.0.0",
|
53 |
-
),
|
54 |
-
])
|
55 |
-
|
56 |
-
def _info(self):
|
57 |
-
"""
|
58 |
-
NOTE: we might want to specify features, but since the features are different for each
|
59 |
-
model size it's annoying and kind of pointless since hf does it automatically
|
60 |
-
"""
|
61 |
-
|
62 |
-
return datasets.DatasetInfo(
|
63 |
-
description=_DESCRIPTION,
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
68 |
-
"""
|
69 |
-
Returns data for different splits - we define a split as a model size.
|
70 |
-
"""
|
71 |
-
|
72 |
-
to_download_files = []
|
73 |
-
|
74 |
-
kwargs_checkpoint_steps = []
|
75 |
-
kwargs_gradient_steps = []
|
76 |
-
|
77 |
-
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
|
78 |
-
checkpoint_steps.extend([(i * 10000) for i in range(0, 15)])
|
79 |
-
|
80 |
-
def get_gradient_step(step: int):
|
81 |
-
"""
|
82 |
-
Return a list of the gradient steps that are used at a given checkpoint step.
|
83 |
-
"""
|
84 |
-
return list(range(max(0, step-5), min(step+6, 143_000)))
|
85 |
-
|
86 |
-
def get_gradient_mini_step(step: int):
|
87 |
-
"""
|
88 |
-
Return a list of the gradient steps that are used at a given checkpoint step, we
|
89 |
-
limit the amount of gradients to only 2.
|
90 |
-
"""
|
91 |
-
if step != checkpoint_steps[-1]:
|
92 |
-
return [step, step+1]
|
93 |
-
else:
|
94 |
-
return [step-2, step-1]
|
95 |
-
|
96 |
-
model_size = self.config.name.split("__")[0]
|
97 |
-
|
98 |
-
for checkpoint_step in checkpoint_steps:
|
99 |
-
|
100 |
-
directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"
|
101 |
-
|
102 |
-
if "activations" in self.config.name:
|
103 |
-
to_download_files.append(f"{directory_path}/checkpoint_activations.pickle")
|
104 |
-
kwargs_checkpoint_steps.append(checkpoint_step)
|
105 |
-
elif "weights" in self.config.name:
|
106 |
-
to_download_files.append(f"{directory_path}/checkpoint_weights.pickle")
|
107 |
-
kwargs_checkpoint_steps.append(checkpoint_step)
|
108 |
-
elif "gradients" in self.config.name:
|
109 |
-
if "mini" in self.config.name:
|
110 |
-
gradient_steps = get_gradient_mini_step(checkpoint_step)
|
111 |
-
else:
|
112 |
-
gradient_steps = get_gradient_step(checkpoint_step)
|
113 |
-
|
114 |
-
for gradient_step in gradient_steps:
|
115 |
-
to_download_files.append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
|
116 |
-
kwargs_checkpoint_steps.append(checkpoint_step)
|
117 |
-
kwargs_gradient_steps.append(gradient_step)
|
118 |
-
else:
|
119 |
-
raise Exception("Invalid config name")
|
120 |
-
|
121 |
-
downloaded_files = dl_manager.download_and_extract(to_download_files)
|
122 |
-
|
123 |
-
return [
|
124 |
-
datasets.SplitGenerator(
|
125 |
-
name='default',
|
126 |
-
gen_kwargs={
|
127 |
-
"filepaths": downloaded_files,
|
128 |
-
"checkpoint_steps": kwargs_checkpoint_steps,
|
129 |
-
**({"gradient_steps": kwargs_gradient_steps} if "gradients" in self.config.name else {}),
|
130 |
-
}
|
131 |
-
)
|
132 |
-
]
|
133 |
-
|
134 |
-
def _generate_examples(self, filepaths, checkpoint_steps, **kwargs):
|
135 |
-
|
136 |
-
# the filepaths should be a list of filepaths
|
137 |
-
if isinstance(filepaths, str):
|
138 |
-
filepaths = [filepaths]
|
139 |
-
|
140 |
-
if "gradients" in self.config.name:
|
141 |
-
gradient_steps = kwargs["gradient_steps"]
|
142 |
-
|
143 |
-
global_idx = 0 # the unique identifier for the example
|
144 |
-
|
145 |
-
for idx, filepath in enumerate(filepaths):
|
146 |
-
with open(filepath, 'rb') as f:
|
147 |
-
data = pickle.load(f)
|
148 |
-
|
149 |
-
for layer_name, layer_data in data.items():
|
150 |
-
record = {
|
151 |
-
"checkpoint_step": checkpoint_steps[idx],
|
152 |
-
"layer_name": layer_name,
|
153 |
-
"data": layer_data,
|
154 |
-
}
|
155 |
-
if "gradients" in self.config.name:
|
156 |
-
record['gradient_step'] = gradient_steps[idx]
|
157 |
-
|
158 |
-
yield global_idx, record
|
159 |
-
global_idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|