File size: 6,232 Bytes
a9cc57b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import re
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_DATASETNAME = "ask_a_patient"
_DISPLAYNAME = "AskAPatient"
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """
@inproceedings{limsopatham-collier-2016-normalising,
title = "Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation",
author = "Limsopatham, Nut and
Collier, Nigel",
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2016",
address = "Berlin, Germany",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P16-1096",
doi = "10.18653/v1/P16-1096",
pages = "1014--1023",
}
"""
_DESCRIPTION = """
The AskAPatient dataset contains medical concepts written on social media \
mapped to how they are formally written in medical ontologies (SNOMED-CT and AMT).
"""
_HOMEPAGE = "https://zenodo.org/record/55013"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_URLs = "https://zenodo.org/record/55013/files/datasets.zip"
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class AskAPatient(datasets.GeneratorBasedBuilder):
"""AskAPatient: Dataset for Normalising Medical Concepts in Social Media Text."""
DEFAULT_CONFIG_NAME = "ask_a_patient_source"
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="ask_a_patient_source",
version=SOURCE_VERSION,
description="AskAPatient source schema",
schema="source",
subset_id="ask_a_patient",
),
BigBioConfig(
name="ask_a_patient_bigbio_kb",
version=BIGBIO_VERSION,
description="AskAPatient simplified BigBio schema",
schema="bigbio_kb",
subset_id="ask_a_patient",
),
]
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"cui": datasets.Value("string"),
"medical_concept": datasets.Value("string"),
"social_media_text": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URLs)
dataset_dir = os.path.join(dl_dir, "datasets", "AskAPatient")
# dataset supports k-folds
splits = []
for split_name in [
datasets.Split.TRAIN,
datasets.Split.VALIDATION,
datasets.Split.TEST,
]:
for fold_filepath in glob.glob(
os.path.join(dataset_dir, f"AskAPatient.fold-*.{split_name}.txt")
):
fold_id = re.search("AskAPatient\.fold-(\d)\.", fold_filepath).group(1)
split_id = f"{split_name}_{fold_id}"
splits.append(
datasets.SplitGenerator(
name=split_id,
gen_kwargs={"filepath": fold_filepath, "split_id": split_id},
)
)
return splits
def _generate_examples(self, filepath, split_id):
with open(filepath, "r", encoding="latin-1") as f:
for i, line in enumerate(f):
id = f"{split_id}_{i}"
cui, medical_concept, social_media_text = line.strip().split("\t")
if self.config.schema == "source":
yield id, {
"cui": cui,
"medical_concept": medical_concept,
"social_media_text": social_media_text,
}
elif self.config.schema == "bigbio_kb":
text_type = "social_media_text"
offset = (0, len(social_media_text))
yield id, {
"id": id,
"document_id": id,
"passages": [
{
"id": f"{id}_passage",
"type": text_type,
"text": [social_media_text],
"offsets": [offset],
}
],
"entities": [
{
"id": f"{id}_entity",
"type": text_type,
"text": [social_media_text],
"offsets": [offset],
"normalized": [
{"db_name": "SNOMED-CT|AMT", "db_id": cui}
],
}
],
"events": [],
"coreferences": [],
"relations": [],
}
|