# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import re import datasets from .bigbiohub import kb_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _DATASETNAME = "ask_a_patient" _DISPLAYNAME = "AskAPatient" _LANGUAGES = ['English'] _PUBMED = True _LOCAL = False _CITATION = """ @inproceedings{limsopatham-collier-2016-normalising, title = "Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation", author = "Limsopatham, Nut and Collier, Nigel", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P16-1096", doi = "10.18653/v1/P16-1096", pages = "1014--1023", } """ _DESCRIPTION = """ The AskAPatient dataset contains medical concepts written on social media \ mapped to how they are formally written in medical ontologies (SNOMED-CT and AMT). """ _HOMEPAGE = "https://zenodo.org/record/55013" _LICENSE = 'Creative Commons Attribution 4.0 International' _URLs = "https://zenodo.org/record/55013/files/datasets.zip" _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" class AskAPatient(datasets.GeneratorBasedBuilder): """AskAPatient: Dataset for Normalising Medical Concepts in Social Media Text.""" DEFAULT_CONFIG_NAME = "ask_a_patient_source" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ BigBioConfig( name="ask_a_patient_source", version=SOURCE_VERSION, description="AskAPatient source schema", schema="source", subset_id="ask_a_patient", ), BigBioConfig( name="ask_a_patient_bigbio_kb", version=BIGBIO_VERSION, description="AskAPatient simplified BigBio schema", schema="bigbio_kb", subset_id="ask_a_patient", ), ] def _info(self): if self.config.schema == "source": features = datasets.Features( { "cui": datasets.Value("string"), "medical_concept": datasets.Value("string"), "social_media_text": datasets.Value("string"), } ) elif self.config.schema == "bigbio_kb": features = kb_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URLs) dataset_dir = os.path.join(dl_dir, "datasets", "AskAPatient") # dataset supports k-folds splits = [] for split_name in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ]: for fold_filepath in glob.glob( os.path.join(dataset_dir, f"AskAPatient.fold-*.{split_name}.txt") ): fold_id = re.search("AskAPatient\.fold-(\d)\.", fold_filepath).group(1) split_id = f"{split_name}_{fold_id}" splits.append( datasets.SplitGenerator( name=split_id, gen_kwargs={"filepath": fold_filepath, "split_id": split_id}, ) ) return splits def _generate_examples(self, filepath, split_id): with open(filepath, "r", encoding="latin-1") as f: for i, line in enumerate(f): id = f"{split_id}_{i}" cui, medical_concept, social_media_text = line.strip().split("\t") if self.config.schema == "source": yield id, { "cui": cui, "medical_concept": medical_concept, "social_media_text": social_media_text, } elif self.config.schema == "bigbio_kb": text_type = "social_media_text" offset = (0, len(social_media_text)) yield id, { "id": id, "document_id": id, "passages": [ { "id": f"{id}_passage", "type": text_type, "text": [social_media_text], "offsets": [offset], } ], "entities": [ { "id": f"{id}_entity", "type": text_type, "text": [social_media_text], "offsets": [offset], "normalized": [ {"db_name": "SNOMED-CT|AMT", "db_id": cui} ], } ], "events": [], "coreferences": [], "relations": [], }