File size: 5,438 Bytes
8849146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Bio-SimLex enables intrinsic evaluation of word representations. This evaluation
can serve as a predictor of performance on various downstream tasks in the
biomedical domain. The results on Bio-SimLex using standard word representation
models highlight the importance of developing dedicated evaluation resources for
NLP in biomedicine for particular word classes (e.g. verbs).
"""
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{article,
title = {
Bio-SimVerb and Bio-SimLex: Wide-coverage evaluation sets of word
similarity in biomedicine
},
author = {Chiu, Billy and Pyysalo, Sampo and Vulić, Ivan and Korhonen, Anna},
year = 2018,
month = {02},
journal = {BMC Bioinformatics},
volume = 19,
pages = {},
doi = {10.1186/s12859-018-2039-z}
}
"""
_DATASETNAME = "bio_simlex"
_DISPLAYNAME = "Bio-SimLex"
_DESCRIPTION = """\
Bio-SimLex enables intrinsic evaluation of word representations. This evaluation \
can serve as a predictor of performance on various downstream tasks in the \
biomedical domain. The results on Bio-SimLex using standard word representation \
models highlight the importance of developing dedicated evaluation resources for \
NLP in biomedicine for particular word classes (e.g. verbs).
"""
_HOMEPAGE = "https://github.com/cambridgeltl/bio-simverb"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: "https://github.com/cambridgeltl/bio-simverb/blob/master/wvlib/word-similarities/\
bio-simlex/Bio-SimLex.txt?raw=true"
}
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class BioSimlexDataset(datasets.GeneratorBasedBuilder):
"""
Bio-SimLex enables intrinsic evaluation of word representations. Config schema
as source gives score between 0-10 for pairs of words. The source schema casts
labels as `float`, but the bigbio schema casts them as `str`.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="bio_simlex_source",
version=SOURCE_VERSION,
description="bio_simlex source schema",
schema="source",
subset_id="bio_simlex",
),
BigBioConfig(
name="bio_simlex_bigbio_pairs",
version=BIGBIO_VERSION,
description="bio_simlex BigBio schema",
schema="bigbio_pairs",
subset_id="bio_simlex",
),
]
DEFAULT_CONFIG_NAME = "bio_simlex_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"score": datasets.Value("float32"),
}
)
elif self.config.schema == "bigbio_pairs":
features = pairs_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
url = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r", encoding="utf-8") as f:
for id_, line in enumerate(f):
word1, word2, score = line.split("\t")
if self.config.schema == "source":
yield id_, {
"text_1": word1,
"text_2": word2,
"score": float(score),
}
elif self.config.schema == "bigbio_pairs":
yield id_, {
"id": str(id_),
"document_id": str(id_),
"text_1": word1,
"text_2": word2,
"label": str(score.strip()),
}
|