|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The main aim of MESINESP2 is to promote the development of practically relevant |
|
semantic indexing tools for biomedical content in non-English language. We have |
|
generated a manually annotated corpus, where domain experts have labeled a set |
|
of scientific literature, clinical trials, and patent abstracts. All the |
|
documents were labeled with DeCS descriptors, which is a structured controlled |
|
vocabulary created by BIREME to index scientific publications on BvSalud, the |
|
largest database of scientific documents in Spanish, which hosts records from |
|
the databases LILACS, MEDLINE, IBECS, among others. |
|
|
|
MESINESP track at BioASQ9 explores the efficiency of systems for assigning DeCS |
|
to different types of biomedical documents. To that purpose, we have divided the |
|
task into three subtracks depending on the document type. Then, for each one we |
|
generated an annotated corpus which was provided to participating teams: |
|
|
|
- [Subtrack 1 corpus] MESINESP-L – Scientific Literature: It contains all |
|
Spanish records from LILACS and IBECS databases at the Virtual Health Library |
|
(VHL) with non-empty abstract written in Spanish. |
|
- [Subtrack 2 corpus] MESINESP-T- Clinical Trials contains records from Registro |
|
Español de Estudios Clínicos (REEC). REEC doesn't provide documents with the |
|
structure title/abstract needed in BioASQ, for that reason we have built |
|
artificial abstracts based on the content available in the data crawled using |
|
the REEC API. |
|
- [Subtrack 3 corpus] MESINESP-P – Patents: This corpus includes patents in |
|
Spanish extracted from Google Patents which have the IPC code “A61P” and |
|
“A61K31”. In addition, we also provide a set of complementary data such as: |
|
the DeCS terminology file, a silver standard with the participants' predictions |
|
to the task background set and the entities of medications, diseases, symptoms |
|
and medical procedures extracted from the BSC NERs documents. |
|
""" |
|
|
|
import json |
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['Spanish'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@conference {396, |
|
title = {Overview of BioASQ 2021-MESINESP track. Evaluation of |
|
advance hierarchical classification techniques for scientific |
|
literature, patents and clinical trials.}, |
|
booktitle = {Proceedings of the 9th BioASQ Workshop |
|
A challenge on large-scale biomedical semantic indexing |
|
and question answering}, |
|
year = {2021}, |
|
url = {http://ceur-ws.org/Vol-2936/paper-11.pdf}, |
|
author = {Gasco, Luis and Nentidis, Anastasios and Krithara, Anastasia |
|
and Estrada-Zavala, Darryl and Toshiyuki Murasaki, Renato and Primo-Pe{\~n}a, |
|
Elena and Bojo-Canales, Cristina and Paliouras, Georgios and Krallinger, Martin} |
|
} |
|
|
|
""" |
|
|
|
_DATASETNAME = "bioasq_2021_mesinesp" |
|
_DISPLAYNAME = "MESINESP 2021" |
|
|
|
_DESCRIPTION = """\ |
|
The main aim of MESINESP2 is to promote the development of practically relevant \ |
|
semantic indexing tools for biomedical content in non-English language. We have \ |
|
generated a manually annotated corpus, where domain experts have labeled a set \ |
|
of scientific literature, clinical trials, and patent abstracts. All the \ |
|
documents were labeled with DeCS descriptors, which is a structured controlled \ |
|
vocabulary created by BIREME to index scientific publications on BvSalud, the \ |
|
largest database of scientific documents in Spanish, which hosts records from \ |
|
the databases LILACS, MEDLINE, IBECS, among others. |
|
|
|
MESINESP track at BioASQ9 explores the efficiency of systems for assigning DeCS \ |
|
to different types of biomedical documents. To that purpose, we have divided the \ |
|
task into three subtracks depending on the document type. Then, for each one we \ |
|
generated an annotated corpus which was provided to participating teams: |
|
|
|
- [Subtrack 1 corpus] MESINESP-L – Scientific Literature: It contains all \ |
|
Spanish records from LILACS and IBECS databases at the Virtual Health Library \ |
|
(VHL) with non-empty abstract written in Spanish. |
|
- [Subtrack 2 corpus] MESINESP-T- Clinical Trials contains records from Registro \ |
|
Español de Estudios Clínicos (REEC). REEC doesn't provide documents with the \ |
|
structure title/abstract needed in BioASQ, for that reason we have built \ |
|
artificial abstracts based on the content available in the data crawled using \ |
|
the REEC API. |
|
- [Subtrack 3 corpus] MESINESP-P – Patents: This corpus includes patents in \ |
|
Spanish extracted from Google Patents which have the IPC code “A61P” and \ |
|
“A61K31”. In addition, we also provide a set of complementary data such as: \ |
|
the DeCS terminology file, a silver standard with the participants' predictions \ |
|
to the task background set and the entities of medications, diseases, symptoms \ |
|
and medical procedures extracted from the BSC NERs documents. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/5602914#.YhSXJ5PMKWt" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"subtrack1": "https://zenodo.org/record/5602914/files/Subtrack1-Scientific_Literature.zip?download=1", |
|
"subtrack2": "https://zenodo.org/record/5602914/files/Subtrack2-Clinical_Trials.zip?download=1", |
|
"subtrack3": "https://zenodo.org/record/5602914/files/Subtrack3-Patents.zip?download=1", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.6" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class Bioasq2021MesinespDataset(datasets.GeneratorBasedBuilder): |
|
"""\ |
|
A dataset to promote the development of practically relevant |
|
semantic indexing tools for biomedical content in non-English language. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack1_all_source", |
|
version=SOURCE_VERSION, |
|
description="bioasq_2021_mesinesp source schema subtrack1", |
|
schema="source", |
|
subset_id="bioasq_2021_mesinesp_subtrack1_all", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack1_only_articles_source", |
|
version=SOURCE_VERSION, |
|
description="bioasq_2021_mesinesp source schema subtrack1", |
|
schema="source", |
|
subset_id="bioasq_2021_mesinesp_subtrack1_only_articles", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack2_source", |
|
version=SOURCE_VERSION, |
|
description="bioasq_2021_mesinesp source schema subtrack2", |
|
schema="source", |
|
subset_id="bioasq_2021_mesinesp_subtrack2", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack3_source", |
|
version=SOURCE_VERSION, |
|
description="bioasq_2021_mesinesp source schema subtrack3", |
|
schema="source", |
|
subset_id="bioasq_2021_mesinesp_subtrack3", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack1_all_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="bioasq_2021_mesinesp BigBio schema subtrack1", |
|
schema="bigbio_text", |
|
subset_id="bioasq_2021_mesinesp_subtrack1_all", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack1_only_articles_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="bioasq_2021_mesinesp BigBio schema subtrack1", |
|
schema="bigbio_text", |
|
subset_id="bioasq_2021_mesinesp_subtrack1_only_articles", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack2_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="bioasq_2021_mesinesp BigBio schema subtrack2", |
|
schema="bigbio_text", |
|
subset_id="bioasq_2021_mesinesp_subtrack2", |
|
), |
|
BigBioConfig( |
|
name="bioasq_2021_mesinesp_subtrack3_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="bioasq_2021_mesinesp BigBio schema subtrack3", |
|
schema="bigbio_text", |
|
subset_id="bioasq_2021_mesinesp_subtrack3", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bioasq_2021_mesinesp_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"abstractText": datasets.Value("string"), |
|
"db": datasets.Value("string"), |
|
"decsCodes": datasets.Sequence(datasets.Value("string")), |
|
"id": datasets.Value("string"), |
|
"journal": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
if "subtrack1" in self.config.name: |
|
track = "1" |
|
elif "subtrack2" in self.config.name: |
|
track = "2" |
|
else: |
|
track = "3" |
|
|
|
urls = _URLS[_DATASETNAME][f"subtrack{track}"] |
|
if self.config.data_dir is None: |
|
try: |
|
data_dir = dl_manager.download_and_extract(urls) |
|
except ConnectionError: |
|
raise ConnectionError( |
|
"Could not download. Save locally and use `data_dir` kwarg" |
|
) |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
if track == "1": |
|
top_folder = "Subtrack1-Scientific_Literature" |
|
elif track == "2": |
|
top_folder = "Subtrack2-Clinical_Trials" |
|
else: |
|
top_folder = "Subtrack3-Patents" |
|
if track == "1": |
|
if "all" in self.config.name: |
|
train_filepath = "training_set_subtrack1_all.json" |
|
else: |
|
train_filepath = "training_set_subtrack1_only_articles.json" |
|
else: |
|
train_filepath = f"training_set_subtrack{track}.json" |
|
|
|
dev_filepath = f"development_set_subtrack{track}.json" |
|
test_filepath = f"test_set_subtrack{track}.json" |
|
|
|
split_gens = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, top_folder, "Train", train_filepath |
|
), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, top_folder, "Development", dev_filepath |
|
), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, top_folder, "Test", test_filepath |
|
), |
|
}, |
|
), |
|
] |
|
|
|
|
|
if track == "3": |
|
return split_gens[1:] |
|
|
|
return split_gens |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
|
|
with open(filepath) as fp: |
|
data = json.load(fp) |
|
|
|
for key, example in enumerate(data["articles"]): |
|
yield key, example |
|
|
|
elif self.config.schema == "bigbio_text": |
|
with open(filepath) as fp: |
|
data = json.load(fp) |
|
|
|
for key, example in enumerate(data["articles"]): |
|
yield key, { |
|
"id": example["id"], |
|
"document_id": "NULL", |
|
"text": example["abstractText"], |
|
"labels": example["decsCodes"], |
|
} |
|
|