Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
gabrielaltay commited on
Commit
0d72750
·
1 Parent(s): 18b3e7f

upload hubscripts/bioasq_2021_mesinesp_hub.py to hub from bigbio repo

Browse files
Files changed (1) hide show
  1. bioasq_2021_mesinesp.py +315 -0
bioasq_2021_mesinesp.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ The main aim of MESINESP2 is to promote the development of practically relevant
17
+ semantic indexing tools for biomedical content in non-English language. We have
18
+ generated a manually annotated corpus, where domain experts have labeled a set
19
+ of scientific literature, clinical trials, and patent abstracts. All the
20
+ documents were labeled with DeCS descriptors, which is a structured controlled
21
+ vocabulary created by BIREME to index scientific publications on BvSalud, the
22
+ largest database of scientific documents in Spanish, which hosts records from
23
+ the databases LILACS, MEDLINE, IBECS, among others.
24
+
25
+ MESINESP track at BioASQ9 explores the efficiency of systems for assigning DeCS
26
+ to different types of biomedical documents. To that purpose, we have divided the
27
+ task into three subtracks depending on the document type. Then, for each one we
28
+ generated an annotated corpus which was provided to participating teams:
29
+
30
+ - [Subtrack 1 corpus] MESINESP-L – Scientific Literature: It contains all
31
+ Spanish records from LILACS and IBECS databases at the Virtual Health Library
32
+ (VHL) with non-empty abstract written in Spanish.
33
+ - [Subtrack 2 corpus] MESINESP-T- Clinical Trials contains records from Registro
34
+ Español de Estudios Clínicos (REEC). REEC doesn't provide documents with the
35
+ structure title/abstract needed in BioASQ, for that reason we have built
36
+ artificial abstracts based on the content available in the data crawled using
37
+ the REEC API.
38
+ - [Subtrack 3 corpus] MESINESP-P – Patents: This corpus includes patents in
39
+ Spanish extracted from Google Patents which have the IPC code “A61P” and
40
+ “A61K31”. In addition, we also provide a set of complementary data such as:
41
+ the DeCS terminology file, a silver standard with the participants' predictions
42
+ to the task background set and the entities of medications, diseases, symptoms
43
+ and medical procedures extracted from the BSC NERs documents.
44
+ """
45
+
46
+ import json
47
+ import os
48
+ from typing import Dict, List, Tuple
49
+
50
+ import datasets
51
+
52
+ from .bigbiohub import text.features
53
+ from .bigbiohub import BigBioConfig
54
+ from .bigbiohub import Tasks
55
+
56
+ _LANGUAGES = ['Spanish']
57
+ _PUBMED = False
58
+ _LOCAL = False
59
+ _CITATION = """\
60
+ @conference {396,
61
+ title = {Overview of BioASQ 2021-MESINESP track. Evaluation of
62
+ advance hierarchical classification techniques for scientific
63
+ literature, patents and clinical trials.},
64
+ booktitle = {Proceedings of the 9th BioASQ Workshop
65
+ A challenge on large-scale biomedical semantic indexing
66
+ and question answering},
67
+ year = {2021},
68
+ url = {http://ceur-ws.org/Vol-2936/paper-11.pdf},
69
+ author = {Gasco, Luis and Nentidis, Anastasios and Krithara, Anastasia
70
+ and Estrada-Zavala, Darryl and Toshiyuki Murasaki, Renato and Primo-Pe{\~n}a,
71
+ Elena and Bojo-Canales, Cristina and Paliouras, Georgios and Krallinger, Martin}
72
+ }
73
+
74
+ """
75
+
76
+ _DATASETNAME = "bioasq_2021_mesinesp"
77
+ _DISPLAYNAME = "MESINESP 2021"
78
+
79
+ _DESCRIPTION = """\
80
+ The main aim of MESINESP2 is to promote the development of practically relevant \
81
+ semantic indexing tools for biomedical content in non-English language. We have \
82
+ generated a manually annotated corpus, where domain experts have labeled a set \
83
+ of scientific literature, clinical trials, and patent abstracts. All the \
84
+ documents were labeled with DeCS descriptors, which is a structured controlled \
85
+ vocabulary created by BIREME to index scientific publications on BvSalud, the \
86
+ largest database of scientific documents in Spanish, which hosts records from \
87
+ the databases LILACS, MEDLINE, IBECS, among others.
88
+
89
+ MESINESP track at BioASQ9 explores the efficiency of systems for assigning DeCS \
90
+ to different types of biomedical documents. To that purpose, we have divided the \
91
+ task into three subtracks depending on the document type. Then, for each one we \
92
+ generated an annotated corpus which was provided to participating teams:
93
+
94
+ - [Subtrack 1 corpus] MESINESP-L – Scientific Literature: It contains all \
95
+ Spanish records from LILACS and IBECS databases at the Virtual Health Library \
96
+ (VHL) with non-empty abstract written in Spanish.
97
+ - [Subtrack 2 corpus] MESINESP-T- Clinical Trials contains records from Registro \
98
+ Español de Estudios Clínicos (REEC). REEC doesn't provide documents with the \
99
+ structure title/abstract needed in BioASQ, for that reason we have built \
100
+ artificial abstracts based on the content available in the data crawled using \
101
+ the REEC API.
102
+ - [Subtrack 3 corpus] MESINESP-P – Patents: This corpus includes patents in \
103
+ Spanish extracted from Google Patents which have the IPC code “A61P” and \
104
+ “A61K31”. In addition, we also provide a set of complementary data such as: \
105
+ the DeCS terminology file, a silver standard with the participants' predictions \
106
+ to the task background set and the entities of medications, diseases, symptoms \
107
+ and medical procedures extracted from the BSC NERs documents.
108
+ """
109
+
110
+ _HOMEPAGE = "https://zenodo.org/record/5602914#.YhSXJ5PMKWt"
111
+
112
+ _LICENSE = 'Creative Commons Attribution 4.0 International'
113
+
114
+ _URLS = {
115
+ _DATASETNAME: {
116
+ "subtrack1": "https://zenodo.org/record/5602914/files/Subtrack1-Scientific_Literature.zip?download=1",
117
+ "subtrack2": "https://zenodo.org/record/5602914/files/Subtrack2-Clinical_Trials.zip?download=1",
118
+ "subtrack3": "https://zenodo.org/record/5602914/files/Subtrack3-Patents.zip?download=1",
119
+ },
120
+ }
121
+
122
+ _SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
123
+
124
+ _SOURCE_VERSION = "1.0.6"
125
+ _BIGBIO_VERSION = "1.0.0"
126
+
127
+
128
+ class Bioasq2021MesinespDataset(datasets.GeneratorBasedBuilder):
129
+ """\
130
+ A dataset to promote the development of practically relevant
131
+ semantic indexing tools for biomedical content in non-English language.
132
+ """
133
+
134
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
135
+ BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
136
+
137
+ BUILDER_CONFIGS = [
138
+ BigBioConfig(
139
+ name="bioasq_2021_mesinesp_subtrack1_all_source",
140
+ version=SOURCE_VERSION,
141
+ description="bioasq_2021_mesinesp source schema subtrack1",
142
+ schema="source",
143
+ subset_id="bioasq_2021_mesinesp_subtrack1_all",
144
+ ),
145
+ BigBioConfig(
146
+ name="bioasq_2021_mesinesp_subtrack1_only_articles_source",
147
+ version=SOURCE_VERSION,
148
+ description="bioasq_2021_mesinesp source schema subtrack1",
149
+ schema="source",
150
+ subset_id="bioasq_2021_mesinesp_subtrack1_only_articles",
151
+ ),
152
+ BigBioConfig(
153
+ name="bioasq_2021_mesinesp_subtrack2_source",
154
+ version=SOURCE_VERSION,
155
+ description="bioasq_2021_mesinesp source schema subtrack2",
156
+ schema="source",
157
+ subset_id="bioasq_2021_mesinesp_subtrack2",
158
+ ),
159
+ BigBioConfig(
160
+ name="bioasq_2021_mesinesp_subtrack3_source",
161
+ version=SOURCE_VERSION,
162
+ description="bioasq_2021_mesinesp source schema subtrack3",
163
+ schema="source",
164
+ subset_id="bioasq_2021_mesinesp_subtrack3",
165
+ ),
166
+ BigBioConfig(
167
+ name="bioasq_2021_mesinesp_subtrack1_all_bigbio_text",
168
+ version=BIGBIO_VERSION,
169
+ description="bioasq_2021_mesinesp BigBio schema subtrack1",
170
+ schema="bigbio_text",
171
+ subset_id="bioasq_2021_mesinesp_subtrack1_all",
172
+ ),
173
+ BigBioConfig(
174
+ name="bioasq_2021_mesinesp_subtrack1_only_articles_bigbio_text",
175
+ version=BIGBIO_VERSION,
176
+ description="bioasq_2021_mesinesp BigBio schema subtrack1",
177
+ schema="bigbio_text",
178
+ subset_id="bioasq_2021_mesinesp_subtrack1_only_articles",
179
+ ),
180
+ BigBioConfig(
181
+ name="bioasq_2021_mesinesp_subtrack2_bigbio_text",
182
+ version=BIGBIO_VERSION,
183
+ description="bioasq_2021_mesinesp BigBio schema subtrack2",
184
+ schema="bigbio_text",
185
+ subset_id="bioasq_2021_mesinesp_subtrack2",
186
+ ),
187
+ BigBioConfig(
188
+ name="bioasq_2021_mesinesp_subtrack3_bigbio_text",
189
+ version=BIGBIO_VERSION,
190
+ description="bioasq_2021_mesinesp BigBio schema subtrack3",
191
+ schema="bigbio_text",
192
+ subset_id="bioasq_2021_mesinesp_subtrack3",
193
+ ),
194
+ ]
195
+
196
+ DEFAULT_CONFIG_NAME = "bioasq_2021_mesinesp_source"
197
+
198
+ def _info(self) -> datasets.DatasetInfo:
199
+
200
+ if self.config.schema == "source":
201
+ features = datasets.Features(
202
+ {
203
+ "abstractText": datasets.Value("string"),
204
+ "db": datasets.Value("string"),
205
+ "decsCodes": datasets.Sequence(datasets.Value("string")),
206
+ "id": datasets.Value("string"),
207
+ "journal": datasets.Value("string"),
208
+ "title": datasets.Value("string"),
209
+ "year": datasets.Value("string"),
210
+ }
211
+ )
212
+ elif self.config.schema == "bigbio_text":
213
+ features = text.features
214
+
215
+ return datasets.DatasetInfo(
216
+ description=_DESCRIPTION,
217
+ features=features,
218
+ homepage=_HOMEPAGE,
219
+ license=str(_LICENSE),
220
+ citation=_CITATION,
221
+ )
222
+
223
+ def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
224
+ """Returns SplitGenerators."""
225
+
226
+ if "subtrack1" in self.config.name:
227
+ track = "1"
228
+ elif "subtrack2" in self.config.name:
229
+ track = "2"
230
+ else:
231
+ track = "3"
232
+
233
+ urls = _URLS[_DATASETNAME][f"subtrack{track}"]
234
+ if self.config.data_dir is None:
235
+ try:
236
+ data_dir = dl_manager.download_and_extract(urls)
237
+ except ConnectionError:
238
+ raise ConnectionError(
239
+ "Could not download. Save locally and use `data_dir` kwarg"
240
+ )
241
+ else:
242
+ data_dir = self.config.data_dir
243
+
244
+ if track == "1":
245
+ top_folder = "Subtrack1-Scientific_Literature"
246
+ elif track == "2":
247
+ top_folder = "Subtrack2-Clinical_Trials"
248
+ else:
249
+ top_folder = "Subtrack3-Patents"
250
+ if track == "1":
251
+ if "all" in self.config.name:
252
+ train_filepath = "training_set_subtrack1_all.json"
253
+ else:
254
+ train_filepath = "training_set_subtrack1_only_articles.json"
255
+ else:
256
+ train_filepath = f"training_set_subtrack{track}.json"
257
+
258
+ dev_filepath = f"development_set_subtrack{track}.json"
259
+ test_filepath = f"test_set_subtrack{track}.json"
260
+
261
+ split_gens = [
262
+ datasets.SplitGenerator(
263
+ name=datasets.Split.TRAIN,
264
+ gen_kwargs={
265
+ "filepath": os.path.join(
266
+ data_dir, top_folder, "Train", train_filepath
267
+ ),
268
+ },
269
+ ),
270
+ datasets.SplitGenerator(
271
+ name=datasets.Split.VALIDATION,
272
+ gen_kwargs={
273
+ "filepath": os.path.join(
274
+ data_dir, top_folder, "Development", dev_filepath
275
+ ),
276
+ },
277
+ ),
278
+ datasets.SplitGenerator(
279
+ name=datasets.Split.TEST,
280
+ gen_kwargs={
281
+ "filepath": os.path.join(
282
+ data_dir, top_folder, "Test", test_filepath
283
+ ),
284
+ },
285
+ ),
286
+ ]
287
+
288
+ # track 3 doesn't have Train data
289
+ if track == "3":
290
+ return split_gens[1:]
291
+
292
+ return split_gens
293
+
294
+ def _generate_examples(self, filepath) -> Tuple[int, Dict]:
295
+ """Yields examples as (key, example) tuples."""
296
+
297
+ if self.config.schema == "source":
298
+
299
+ with open(filepath) as fp:
300
+ data = json.load(fp)
301
+
302
+ for key, example in enumerate(data["articles"]):
303
+ yield key, example
304
+
305
+ elif self.config.schema == "bigbio_text":
306
+ with open(filepath) as fp:
307
+ data = json.load(fp)
308
+
309
+ for key, example in enumerate(data["articles"]):
310
+ yield key, {
311
+ "id": example["id"],
312
+ "document_id": "NULL",
313
+ "text": example["abstractText"],
314
+ "labels": example["decsCodes"],
315
+ }