Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
parquet-converter commited on
Commit
a3563cb
·
1 Parent(s): f4bcff3

Update parquet files

Browse files
Files changed (40) hide show
  1. .gitattributes +0 -54
  2. bigbiohub.py +0 -556
  3. biomrc.py +0 -247
  4. biomrc_large_A_bigbio_qa/biomrc-test.parquet +3 -0
  5. biomrc_large_A_bigbio_qa/biomrc-train-00000-of-00003.parquet +3 -0
  6. biomrc_large_A_bigbio_qa/biomrc-train-00001-of-00003.parquet +3 -0
  7. biomrc_large_A_bigbio_qa/biomrc-train-00002-of-00003.parquet +3 -0
  8. biomrc_large_A_bigbio_qa/biomrc-validation.parquet +3 -0
  9. biomrc_large_A_source/biomrc-test.parquet +3 -0
  10. biomrc_large_A_source/biomrc-train-00000-of-00004.parquet +3 -0
  11. biomrc_large_A_source/biomrc-train-00001-of-00004.parquet +3 -0
  12. biomrc_large_A_source/biomrc-train-00002-of-00004.parquet +3 -0
  13. biomrc_large_A_source/biomrc-train-00003-of-00004.parquet +3 -0
  14. biomrc_large_A_source/biomrc-validation.parquet +3 -0
  15. biomrc_large_B_bigbio_qa/biomrc-test.parquet +3 -0
  16. biomrc_large_B_bigbio_qa/biomrc-train-00000-of-00003.parquet +3 -0
  17. biomrc_large_B_bigbio_qa/biomrc-train-00001-of-00003.parquet +3 -0
  18. biomrc_large_B_bigbio_qa/biomrc-train-00002-of-00003.parquet +3 -0
  19. biomrc_large_B_bigbio_qa/biomrc-validation.parquet +3 -0
  20. biomrc_large_B_source/biomrc-test.parquet +3 -0
  21. biomrc_large_B_source/biomrc-train-00000-of-00003.parquet +3 -0
  22. biomrc_large_B_source/biomrc-train-00001-of-00003.parquet +3 -0
  23. biomrc_large_B_source/biomrc-train-00002-of-00003.parquet +3 -0
  24. biomrc_large_B_source/biomrc-validation.parquet +3 -0
  25. biomrc_small_A_bigbio_qa/biomrc-test.parquet +3 -0
  26. biomrc_small_A_bigbio_qa/biomrc-train.parquet +3 -0
  27. biomrc_small_A_bigbio_qa/biomrc-validation.parquet +3 -0
  28. biomrc_small_A_source/biomrc-test.parquet +3 -0
  29. biomrc_small_A_source/biomrc-train.parquet +3 -0
  30. biomrc_small_A_source/biomrc-validation.parquet +3 -0
  31. biomrc_small_B_bigbio_qa/biomrc-test.parquet +3 -0
  32. biomrc_small_B_bigbio_qa/biomrc-train.parquet +3 -0
  33. biomrc_small_B_bigbio_qa/biomrc-validation.parquet +3 -0
  34. biomrc_small_B_source/biomrc-test.parquet +3 -0
  35. biomrc_small_B_source/biomrc-train.parquet +3 -0
  36. biomrc_small_B_source/biomrc-validation.parquet +3 -0
  37. biomrc_tiny_A_bigbio_qa/biomrc-train.parquet +3 -0
  38. biomrc_tiny_A_source/biomrc-train.parquet +3 -0
  39. biomrc_tiny_B_bigbio_qa/biomrc-train.parquet +3 -0
  40. biomrc_tiny_B_source/biomrc-train.parquet +3 -0
.gitattributes DELETED
@@ -1,54 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
- *.model filter=lfs diff=lfs merge=lfs -text
14
- *.msgpack filter=lfs diff=lfs merge=lfs -text
15
- *.npy filter=lfs diff=lfs merge=lfs -text
16
- *.npz filter=lfs diff=lfs merge=lfs -text
17
- *.onnx filter=lfs diff=lfs merge=lfs -text
18
- *.ot filter=lfs diff=lfs merge=lfs -text
19
- *.parquet filter=lfs diff=lfs merge=lfs -text
20
- *.pb filter=lfs diff=lfs merge=lfs -text
21
- *.pickle filter=lfs diff=lfs merge=lfs -text
22
- *.pkl filter=lfs diff=lfs merge=lfs -text
23
- *.pt filter=lfs diff=lfs merge=lfs -text
24
- *.pth filter=lfs diff=lfs merge=lfs -text
25
- *.rar filter=lfs diff=lfs merge=lfs -text
26
- *.safetensors filter=lfs diff=lfs merge=lfs -text
27
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
- *.tar.* filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - uncompressed
37
- *.pcm filter=lfs diff=lfs merge=lfs -text
38
- *.sam filter=lfs diff=lfs merge=lfs -text
39
- *.raw filter=lfs diff=lfs merge=lfs -text
40
- # Audio files - compressed
41
- *.aac filter=lfs diff=lfs merge=lfs -text
42
- *.flac filter=lfs diff=lfs merge=lfs -text
43
- *.mp3 filter=lfs diff=lfs merge=lfs -text
44
- *.ogg filter=lfs diff=lfs merge=lfs -text
45
- *.wav filter=lfs diff=lfs merge=lfs -text
46
- # Image files - uncompressed
47
- *.bmp filter=lfs diff=lfs merge=lfs -text
48
- *.gif filter=lfs diff=lfs merge=lfs -text
49
- *.png filter=lfs diff=lfs merge=lfs -text
50
- *.tiff filter=lfs diff=lfs merge=lfs -text
51
- # Image files - compressed
52
- *.jpg filter=lfs diff=lfs merge=lfs -text
53
- *.jpeg filter=lfs diff=lfs merge=lfs -text
54
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bigbiohub.py DELETED
@@ -1,556 +0,0 @@
1
- from collections import defaultdict
2
- from dataclasses import dataclass
3
- from enum import Enum
4
- import logging
5
- from pathlib import Path
6
- from types import SimpleNamespace
7
- from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
-
9
- import datasets
10
-
11
- if TYPE_CHECKING:
12
- import bioc
13
-
14
- logger = logging.getLogger(__name__)
15
-
16
-
17
- BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
-
19
-
20
- @dataclass
21
- class BigBioConfig(datasets.BuilderConfig):
22
- """BuilderConfig for BigBio."""
23
-
24
- name: str = None
25
- version: datasets.Version = None
26
- description: str = None
27
- schema: str = None
28
- subset_id: str = None
29
-
30
-
31
- class Tasks(Enum):
32
- NAMED_ENTITY_RECOGNITION = "NER"
33
- NAMED_ENTITY_DISAMBIGUATION = "NED"
34
- EVENT_EXTRACTION = "EE"
35
- RELATION_EXTRACTION = "RE"
36
- COREFERENCE_RESOLUTION = "COREF"
37
- QUESTION_ANSWERING = "QA"
38
- TEXTUAL_ENTAILMENT = "TE"
39
- SEMANTIC_SIMILARITY = "STS"
40
- TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
- PARAPHRASING = "PARA"
42
- TRANSLATION = "TRANSL"
43
- SUMMARIZATION = "SUM"
44
- TEXT_CLASSIFICATION = "TXTCLASS"
45
-
46
-
47
- entailment_features = datasets.Features(
48
- {
49
- "id": datasets.Value("string"),
50
- "premise": datasets.Value("string"),
51
- "hypothesis": datasets.Value("string"),
52
- "label": datasets.Value("string"),
53
- }
54
- )
55
-
56
- pairs_features = datasets.Features(
57
- {
58
- "id": datasets.Value("string"),
59
- "document_id": datasets.Value("string"),
60
- "text_1": datasets.Value("string"),
61
- "text_2": datasets.Value("string"),
62
- "label": datasets.Value("string"),
63
- }
64
- )
65
-
66
- qa_features = datasets.Features(
67
- {
68
- "id": datasets.Value("string"),
69
- "question_id": datasets.Value("string"),
70
- "document_id": datasets.Value("string"),
71
- "question": datasets.Value("string"),
72
- "type": datasets.Value("string"),
73
- "choices": [datasets.Value("string")],
74
- "context": datasets.Value("string"),
75
- "answer": datasets.Sequence(datasets.Value("string")),
76
- }
77
- )
78
-
79
- text_features = datasets.Features(
80
- {
81
- "id": datasets.Value("string"),
82
- "document_id": datasets.Value("string"),
83
- "text": datasets.Value("string"),
84
- "labels": [datasets.Value("string")],
85
- }
86
- )
87
-
88
- text2text_features = datasets.Features(
89
- {
90
- "id": datasets.Value("string"),
91
- "document_id": datasets.Value("string"),
92
- "text_1": datasets.Value("string"),
93
- "text_2": datasets.Value("string"),
94
- "text_1_name": datasets.Value("string"),
95
- "text_2_name": datasets.Value("string"),
96
- }
97
- )
98
-
99
- kb_features = datasets.Features(
100
- {
101
- "id": datasets.Value("string"),
102
- "document_id": datasets.Value("string"),
103
- "passages": [
104
- {
105
- "id": datasets.Value("string"),
106
- "type": datasets.Value("string"),
107
- "text": datasets.Sequence(datasets.Value("string")),
108
- "offsets": datasets.Sequence([datasets.Value("int32")]),
109
- }
110
- ],
111
- "entities": [
112
- {
113
- "id": datasets.Value("string"),
114
- "type": datasets.Value("string"),
115
- "text": datasets.Sequence(datasets.Value("string")),
116
- "offsets": datasets.Sequence([datasets.Value("int32")]),
117
- "normalized": [
118
- {
119
- "db_name": datasets.Value("string"),
120
- "db_id": datasets.Value("string"),
121
- }
122
- ],
123
- }
124
- ],
125
- "events": [
126
- {
127
- "id": datasets.Value("string"),
128
- "type": datasets.Value("string"),
129
- # refers to the text_bound_annotation of the trigger
130
- "trigger": {
131
- "text": datasets.Sequence(datasets.Value("string")),
132
- "offsets": datasets.Sequence([datasets.Value("int32")]),
133
- },
134
- "arguments": [
135
- {
136
- "role": datasets.Value("string"),
137
- "ref_id": datasets.Value("string"),
138
- }
139
- ],
140
- }
141
- ],
142
- "coreferences": [
143
- {
144
- "id": datasets.Value("string"),
145
- "entity_ids": datasets.Sequence(datasets.Value("string")),
146
- }
147
- ],
148
- "relations": [
149
- {
150
- "id": datasets.Value("string"),
151
- "type": datasets.Value("string"),
152
- "arg1_id": datasets.Value("string"),
153
- "arg2_id": datasets.Value("string"),
154
- "normalized": [
155
- {
156
- "db_name": datasets.Value("string"),
157
- "db_id": datasets.Value("string"),
158
- }
159
- ],
160
- }
161
- ],
162
- }
163
- )
164
-
165
-
166
- def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
167
-
168
- offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
169
-
170
- text = ann.text
171
-
172
- if len(offsets) > 1:
173
- i = 0
174
- texts = []
175
- for start, end in offsets:
176
- chunk_len = end - start
177
- texts.append(text[i : chunk_len + i])
178
- i += chunk_len
179
- while i < len(text) and text[i] == " ":
180
- i += 1
181
- else:
182
- texts = [text]
183
-
184
- return offsets, texts
185
-
186
-
187
- def remove_prefix(a: str, prefix: str) -> str:
188
- if a.startswith(prefix):
189
- a = a[len(prefix) :]
190
- return a
191
-
192
-
193
- def parse_brat_file(
194
- txt_file: Path,
195
- annotation_file_suffixes: List[str] = None,
196
- parse_notes: bool = False,
197
- ) -> Dict:
198
- """
199
- Parse a brat file into the schema defined below.
200
- `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
201
- Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
202
- e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
203
- Will include annotator notes, when `parse_notes == True`.
204
- brat_features = datasets.Features(
205
- {
206
- "id": datasets.Value("string"),
207
- "document_id": datasets.Value("string"),
208
- "text": datasets.Value("string"),
209
- "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
210
- {
211
- "offsets": datasets.Sequence([datasets.Value("int32")]),
212
- "text": datasets.Sequence(datasets.Value("string")),
213
- "type": datasets.Value("string"),
214
- "id": datasets.Value("string"),
215
- }
216
- ],
217
- "events": [ # E line in brat
218
- {
219
- "trigger": datasets.Value(
220
- "string"
221
- ), # refers to the text_bound_annotation of the trigger,
222
- "id": datasets.Value("string"),
223
- "type": datasets.Value("string"),
224
- "arguments": datasets.Sequence(
225
- {
226
- "role": datasets.Value("string"),
227
- "ref_id": datasets.Value("string"),
228
- }
229
- ),
230
- }
231
- ],
232
- "relations": [ # R line in brat
233
- {
234
- "id": datasets.Value("string"),
235
- "head": {
236
- "ref_id": datasets.Value("string"),
237
- "role": datasets.Value("string"),
238
- },
239
- "tail": {
240
- "ref_id": datasets.Value("string"),
241
- "role": datasets.Value("string"),
242
- },
243
- "type": datasets.Value("string"),
244
- }
245
- ],
246
- "equivalences": [ # Equiv line in brat
247
- {
248
- "id": datasets.Value("string"),
249
- "ref_ids": datasets.Sequence(datasets.Value("string")),
250
- }
251
- ],
252
- "attributes": [ # M or A lines in brat
253
- {
254
- "id": datasets.Value("string"),
255
- "type": datasets.Value("string"),
256
- "ref_id": datasets.Value("string"),
257
- "value": datasets.Value("string"),
258
- }
259
- ],
260
- "normalizations": [ # N lines in brat
261
- {
262
- "id": datasets.Value("string"),
263
- "type": datasets.Value("string"),
264
- "ref_id": datasets.Value("string"),
265
- "resource_name": datasets.Value(
266
- "string"
267
- ), # Name of the resource, e.g. "Wikipedia"
268
- "cuid": datasets.Value(
269
- "string"
270
- ), # ID in the resource, e.g. 534366
271
- "text": datasets.Value(
272
- "string"
273
- ), # Human readable description/name of the entity, e.g. "Barack Obama"
274
- }
275
- ],
276
- ### OPTIONAL: Only included when `parse_notes == True`
277
- "notes": [ # # lines in brat
278
- {
279
- "id": datasets.Value("string"),
280
- "type": datasets.Value("string"),
281
- "ref_id": datasets.Value("string"),
282
- "text": datasets.Value("string"),
283
- }
284
- ],
285
- },
286
- )
287
- """
288
-
289
- example = {}
290
- example["document_id"] = txt_file.with_suffix("").name
291
- with txt_file.open() as f:
292
- example["text"] = f.read()
293
-
294
- # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
295
- # for event extraction
296
- if annotation_file_suffixes is None:
297
- annotation_file_suffixes = [".a1", ".a2", ".ann"]
298
-
299
- if len(annotation_file_suffixes) == 0:
300
- raise AssertionError(
301
- "At least one suffix for the to-be-read annotation files should be given!"
302
- )
303
-
304
- ann_lines = []
305
- for suffix in annotation_file_suffixes:
306
- annotation_file = txt_file.with_suffix(suffix)
307
- if annotation_file.exists():
308
- with annotation_file.open() as f:
309
- ann_lines.extend(f.readlines())
310
-
311
- example["text_bound_annotations"] = []
312
- example["events"] = []
313
- example["relations"] = []
314
- example["equivalences"] = []
315
- example["attributes"] = []
316
- example["normalizations"] = []
317
-
318
- if parse_notes:
319
- example["notes"] = []
320
-
321
- for line in ann_lines:
322
- line = line.strip()
323
- if not line:
324
- continue
325
-
326
- if line.startswith("T"): # Text bound
327
- ann = {}
328
- fields = line.split("\t")
329
-
330
- ann["id"] = fields[0]
331
- ann["type"] = fields[1].split()[0]
332
- ann["offsets"] = []
333
- span_str = remove_prefix(fields[1], (ann["type"] + " "))
334
- text = fields[2]
335
- for span in span_str.split(";"):
336
- start, end = span.split()
337
- ann["offsets"].append([int(start), int(end)])
338
-
339
- # Heuristically split text of discontiguous entities into chunks
340
- ann["text"] = []
341
- if len(ann["offsets"]) > 1:
342
- i = 0
343
- for start, end in ann["offsets"]:
344
- chunk_len = end - start
345
- ann["text"].append(text[i : chunk_len + i])
346
- i += chunk_len
347
- while i < len(text) and text[i] == " ":
348
- i += 1
349
- else:
350
- ann["text"] = [text]
351
-
352
- example["text_bound_annotations"].append(ann)
353
-
354
- elif line.startswith("E"):
355
- ann = {}
356
- fields = line.split("\t")
357
-
358
- ann["id"] = fields[0]
359
-
360
- ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
361
-
362
- ann["arguments"] = []
363
- for role_ref_id in fields[1].split()[1:]:
364
- argument = {
365
- "role": (role_ref_id.split(":"))[0],
366
- "ref_id": (role_ref_id.split(":"))[1],
367
- }
368
- ann["arguments"].append(argument)
369
-
370
- example["events"].append(ann)
371
-
372
- elif line.startswith("R"):
373
- ann = {}
374
- fields = line.split("\t")
375
-
376
- ann["id"] = fields[0]
377
- ann["type"] = fields[1].split()[0]
378
-
379
- ann["head"] = {
380
- "role": fields[1].split()[1].split(":")[0],
381
- "ref_id": fields[1].split()[1].split(":")[1],
382
- }
383
- ann["tail"] = {
384
- "role": fields[1].split()[2].split(":")[0],
385
- "ref_id": fields[1].split()[2].split(":")[1],
386
- }
387
-
388
- example["relations"].append(ann)
389
-
390
- # '*' seems to be the legacy way to mark equivalences,
391
- # but I couldn't find any info on the current way
392
- # this might have to be adapted dependent on the brat version
393
- # of the annotation
394
- elif line.startswith("*"):
395
- ann = {}
396
- fields = line.split("\t")
397
-
398
- ann["id"] = fields[0]
399
- ann["ref_ids"] = fields[1].split()[1:]
400
-
401
- example["equivalences"].append(ann)
402
-
403
- elif line.startswith("A") or line.startswith("M"):
404
- ann = {}
405
- fields = line.split("\t")
406
-
407
- ann["id"] = fields[0]
408
-
409
- info = fields[1].split()
410
- ann["type"] = info[0]
411
- ann["ref_id"] = info[1]
412
-
413
- if len(info) > 2:
414
- ann["value"] = info[2]
415
- else:
416
- ann["value"] = ""
417
-
418
- example["attributes"].append(ann)
419
-
420
- elif line.startswith("N"):
421
- ann = {}
422
- fields = line.split("\t")
423
-
424
- ann["id"] = fields[0]
425
- ann["text"] = fields[2]
426
-
427
- info = fields[1].split()
428
-
429
- ann["type"] = info[0]
430
- ann["ref_id"] = info[1]
431
- ann["resource_name"] = info[2].split(":")[0]
432
- ann["cuid"] = info[2].split(":")[1]
433
- example["normalizations"].append(ann)
434
-
435
- elif parse_notes and line.startswith("#"):
436
- ann = {}
437
- fields = line.split("\t")
438
-
439
- ann["id"] = fields[0]
440
- ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
441
-
442
- info = fields[1].split()
443
-
444
- ann["type"] = info[0]
445
- ann["ref_id"] = info[1]
446
- example["notes"].append(ann)
447
-
448
- return example
449
-
450
-
451
- def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
452
- """
453
- Transform a brat parse (conforming to the standard brat schema) obtained with
454
- `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
455
- :param brat_parse:
456
- """
457
-
458
- unified_example = {}
459
-
460
- # Prefix all ids with document id to ensure global uniqueness,
461
- # because brat ids are only unique within their document
462
- id_prefix = brat_parse["document_id"] + "_"
463
-
464
- # identical
465
- unified_example["document_id"] = brat_parse["document_id"]
466
- unified_example["passages"] = [
467
- {
468
- "id": id_prefix + "_text",
469
- "type": "abstract",
470
- "text": [brat_parse["text"]],
471
- "offsets": [[0, len(brat_parse["text"])]],
472
- }
473
- ]
474
-
475
- # get normalizations
476
- ref_id_to_normalizations = defaultdict(list)
477
- for normalization in brat_parse["normalizations"]:
478
- ref_id_to_normalizations[normalization["ref_id"]].append(
479
- {
480
- "db_name": normalization["resource_name"],
481
- "db_id": normalization["cuid"],
482
- }
483
- )
484
-
485
- # separate entities and event triggers
486
- unified_example["events"] = []
487
- non_event_ann = brat_parse["text_bound_annotations"].copy()
488
- for event in brat_parse["events"]:
489
- event = event.copy()
490
- event["id"] = id_prefix + event["id"]
491
- trigger = next(
492
- tr
493
- for tr in brat_parse["text_bound_annotations"]
494
- if tr["id"] == event["trigger"]
495
- )
496
- if trigger in non_event_ann:
497
- non_event_ann.remove(trigger)
498
- event["trigger"] = {
499
- "text": trigger["text"].copy(),
500
- "offsets": trigger["offsets"].copy(),
501
- }
502
- for argument in event["arguments"]:
503
- argument["ref_id"] = id_prefix + argument["ref_id"]
504
-
505
- unified_example["events"].append(event)
506
-
507
- unified_example["entities"] = []
508
- anno_ids = [ref_id["id"] for ref_id in non_event_ann]
509
- for ann in non_event_ann:
510
- entity_ann = ann.copy()
511
- entity_ann["id"] = id_prefix + entity_ann["id"]
512
- entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
513
- unified_example["entities"].append(entity_ann)
514
-
515
- # massage relations
516
- unified_example["relations"] = []
517
- skipped_relations = set()
518
- for ann in brat_parse["relations"]:
519
- if (
520
- ann["head"]["ref_id"] not in anno_ids
521
- or ann["tail"]["ref_id"] not in anno_ids
522
- ):
523
- skipped_relations.add(ann["id"])
524
- continue
525
- unified_example["relations"].append(
526
- {
527
- "arg1_id": id_prefix + ann["head"]["ref_id"],
528
- "arg2_id": id_prefix + ann["tail"]["ref_id"],
529
- "id": id_prefix + ann["id"],
530
- "type": ann["type"],
531
- "normalized": [],
532
- }
533
- )
534
- if len(skipped_relations) > 0:
535
- example_id = brat_parse["document_id"]
536
- logger.info(
537
- f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
538
- f" Skip (for now): "
539
- f"{list(skipped_relations)}"
540
- )
541
-
542
- # get coreferences
543
- unified_example["coreferences"] = []
544
- for i, ann in enumerate(brat_parse["equivalences"], start=1):
545
- is_entity_cluster = True
546
- for ref_id in ann["ref_ids"]:
547
- if not ref_id.startswith("T"): # not textbound -> no entity
548
- is_entity_cluster = False
549
- elif ref_id not in anno_ids: # event trigger -> no entity
550
- is_entity_cluster = False
551
- if is_entity_cluster:
552
- entity_ids = [id_prefix + i for i in ann["ref_ids"]]
553
- unified_example["coreferences"].append(
554
- {"id": id_prefix + str(i), "entity_ids": entity_ids}
555
- )
556
- return unified_example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
biomrc.py DELETED
@@ -1,247 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """
17
- We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the
18
- previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the
19
- new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating
20
- that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is
21
- also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new
22
- BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or
23
- surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different
24
- sizes, also releasing our code, and providing a leaderboard.
25
- """
26
-
27
- import itertools as it
28
- import json
29
-
30
- import datasets
31
-
32
- from .bigbiohub import qa_features
33
- from .bigbiohub import BigBioConfig
34
- from .bigbiohub import Tasks
35
-
36
- _LANGUAGES = ["English"]
37
- _PUBMED = True
38
- _LOCAL = False
39
- _CITATION = """\
40
- @inproceedings{pappas-etal-2020-biomrc,
41
- title = "{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension",
42
- author = "Pappas, Dimitris and
43
- Stavropoulos, Petros and
44
- Androutsopoulos, Ion and
45
- McDonald, Ryan",
46
- booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
47
- month = jul,
48
- year = "2020",
49
- address = "Online",
50
- publisher = "Association for Computational Linguistics",
51
- url = "https://www.aclweb.org/anthology/2020.bionlp-1.15",
52
- pages = "140--149",
53
- }
54
- """
55
-
56
- _DATASETNAME = "biomrc"
57
- _DISPLAYNAME = "BIOMRC"
58
-
59
- _DESCRIPTION = """\
60
- We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the
61
- previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the
62
- new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating
63
- that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is
64
- also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new
65
- BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or
66
- surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different
67
- sizes, also releasing our code, and providing a leaderboard.
68
- """
69
-
70
- _HOMEPAGE = "https://github.com/PetrosStav/BioMRC_code"
71
-
72
- _LICENSE = "License information unavailable"
73
-
74
- _BASE_URL = "https://huggingface.co/datasets/biomrc/resolve/main/data/"
75
- _URLS = {
76
- "large": {
77
- "A": {
78
- "train": _BASE_URL + "biomrc_large/dataset_train.jsonl.gz",
79
- "val": _BASE_URL + "biomrc_large/dataset_val.jsonl.gz",
80
- "test": _BASE_URL + "biomrc_large/dataset_test.jsonl.gz",
81
- },
82
- "B": {
83
- "train": _BASE_URL + "biomrc_large/dataset_train_B.jsonl.gz",
84
- "val": _BASE_URL + "biomrc_large/dataset_val_B.jsonl.gz",
85
- "test": _BASE_URL + "biomrc_large/dataset_test_B.jsonl.gz",
86
- },
87
- },
88
- "small": {
89
- "A": {
90
- "train": _BASE_URL + "biomrc_small/dataset_train_small.jsonl.gz",
91
- "val": _BASE_URL + "biomrc_small/dataset_val_small.jsonl.gz",
92
- "test": _BASE_URL + "biomrc_small/dataset_test_small.jsonl.gz",
93
- },
94
- "B": {
95
- "train": _BASE_URL + "biomrc_small/dataset_train_small_B.jsonl.gz",
96
- "val": _BASE_URL + "biomrc_small/dataset_val_small_B.jsonl.gz",
97
- "test": _BASE_URL + "biomrc_small/dataset_test_small_B.jsonl.gz",
98
- },
99
- },
100
- "tiny": {
101
- "A": {"test": _BASE_URL + "biomrc_tiny/dataset_tiny.jsonl.gz"},
102
- "B": {"test": _BASE_URL + "biomrc_tiny/dataset_tiny_B.jsonl.gz"},
103
- },
104
- }
105
-
106
- _SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
107
-
108
- _SOURCE_VERSION = "1.0.0"
109
-
110
- _BIGBIO_VERSION = "1.0.0"
111
-
112
-
113
- class BiomrcDataset(datasets.GeneratorBasedBuilder):
114
- """BioMRC: A Dataset for Biomedical Machine Reading Comprehension"""
115
-
116
- SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
117
- BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
118
-
119
- BUILDER_CONFIGS = []
120
-
121
- for biomrc_setting in ["A", "B"]:
122
- for biomrc_version in ["large", "small", "tiny"]:
123
- subset_id = f"biomrc_{biomrc_version}_{biomrc_setting}"
124
- BUILDER_CONFIGS.append(
125
- BigBioConfig(
126
- name=f"{subset_id}_source",
127
- version=SOURCE_VERSION,
128
- description=f"BioMRC Version {biomrc_version} Setting {biomrc_setting} source schema",
129
- schema="source",
130
- subset_id=subset_id,
131
- )
132
- )
133
- BUILDER_CONFIGS.append(
134
- BigBioConfig(
135
- name=f"{subset_id}_bigbio_qa",
136
- version=BIGBIO_VERSION,
137
- description=f"BioMRC Version {biomrc_version} Setting {biomrc_setting} BigBio schema",
138
- schema="bigbio_qa",
139
- subset_id=subset_id,
140
- )
141
- )
142
-
143
- DEFAULT_CONFIG_NAME = "biomrc_large_B_source"
144
-
145
- def _info(self):
146
- if self.config.schema == "source":
147
- features = datasets.Features(
148
- {
149
- "abstract": datasets.Value("string"),
150
- "title": datasets.Value("string"),
151
- "entities_list": datasets.features.Sequence(
152
- {
153
- "pseudoidentifier": datasets.Value("string"),
154
- "identifier": datasets.Value("string"),
155
- "synonyms": datasets.Value("string"),
156
- }
157
- ),
158
- "answer": {
159
- "pseudoidentifier": datasets.Value("string"),
160
- "identifier": datasets.Value("string"),
161
- "synonyms": datasets.Value("string"),
162
- },
163
- }
164
- )
165
- elif self.config.schema == "bigbio_qa":
166
- features = qa_features
167
- else:
168
- raise NotImplementedError()
169
-
170
- return datasets.DatasetInfo(
171
- description=_DESCRIPTION,
172
- features=features,
173
- homepage=_HOMEPAGE,
174
- license=str(_LICENSE),
175
- citation=_CITATION,
176
- )
177
-
178
- def _split_generators(self, dl_manager):
179
- """Returns SplitGenerators."""
180
-
181
- _, version, setting = self.config.subset_id.split("_")
182
- downloaded_files = dl_manager.download_and_extract(_URLS[version][setting])
183
-
184
- if version == "tiny":
185
- return [
186
- datasets.SplitGenerator(
187
- name=datasets.Split.TRAIN,
188
- gen_kwargs={"filepath": downloaded_files["test"]},
189
- ),
190
- ]
191
- else:
192
- return [
193
- datasets.SplitGenerator(
194
- name=datasets.Split.TRAIN,
195
- gen_kwargs={"filepath": downloaded_files["train"]},
196
- ),
197
- datasets.SplitGenerator(
198
- name=datasets.Split.VALIDATION,
199
- gen_kwargs={"filepath": downloaded_files["val"]},
200
- ),
201
- datasets.SplitGenerator(
202
- name=datasets.Split.TEST,
203
- gen_kwargs={"filepath": downloaded_files["test"]},
204
- ),
205
- ]
206
-
207
- def _generate_examples(self, filepath):
208
- """Yields examples as (key, example) tuples."""
209
-
210
- if self.config.schema == "source":
211
- with open(filepath, encoding="utf-8") as fp:
212
- for _id, line in enumerate(fp):
213
- example = json.loads(line)
214
- example["entities_list"] = [
215
- self._parse_dict_from_entity(entity) for entity in example["entities_list"]
216
- ]
217
- example["answer"] = self._parse_dict_from_entity(example["answer"])
218
- yield _id, example
219
- elif self.config.schema == "bigbio_qa":
220
- with open(filepath, encoding="utf-8") as fp:
221
- uid = it.count(0)
222
- for _id, line in enumerate(fp):
223
- example = json.loads(line)
224
- # remove info such as code, label, synonyms from answer and choices
225
- # f.e. @entity1 :: ('9606', 'Species') :: ['patients', 'patient']"
226
- example = {
227
- "id": next(uid),
228
- "question_id": next(uid),
229
- "document_id": next(uid),
230
- "question": example["title"],
231
- "type": "multiple_choice",
232
- "choices": [x.split(" :: ")[0] for x in example["entities_list"]],
233
- "context": example["abstract"],
234
- "answer": [example["answer"].split(" :: ")[0]],
235
- }
236
- yield _id, example
237
-
238
- def _parse_dict_from_entity(self, entity):
239
- if "::" in entity:
240
- pseudoidentifier, identifier, synonyms = entity.split(" :: ")
241
- return {
242
- "pseudoidentifier": pseudoidentifier,
243
- "identifier": identifier,
244
- "synonyms": synonyms,
245
- }
246
- else:
247
- return {"pseudoidentifier": entity, "identifier": "", "synonyms": ""}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
biomrc_large_A_bigbio_qa/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7925fb0f19d5427c47fca5a3ba0399f5bee83a92a901ffead0476a802d063a47
3
+ size 46671647
biomrc_large_A_bigbio_qa/biomrc-train-00000-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01359c06a1e82c788157239423957a92454632b387e3b88e71aee228c036d5f4
3
+ size 186592653
biomrc_large_A_bigbio_qa/biomrc-train-00001-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:399e41973e93025e6bb97a81eb09094c0bcb8ff2ef4edb21318c2fd8f26453c6
3
+ size 185137367
biomrc_large_A_bigbio_qa/biomrc-train-00002-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b3027fd4ade9954da43d1f5afe0584106c9ee65d14c92c391baf5d862836e3
3
+ size 147305997
biomrc_large_A_bigbio_qa/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:623b1ec251de9262b0777c1013d3cc984101cdc0ef1c11822e85b532f842cc83
3
+ size 37776173
biomrc_large_A_source/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1caea21668666766836b4fe121ebaab2c5bcb0114f01feb926bd60613f6fb41
3
+ size 52044663
biomrc_large_A_source/biomrc-train-00000-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2f565f454e54fc38472dc8257a7bb8cb7bb9156e5b8888a96074b8d74e78547
3
+ size 175806309
biomrc_large_A_source/biomrc-train-00001-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b81324eda2eaded2824eb24b808c785103b5986e3453ac78bd993f6c2adf751
3
+ size 175184155
biomrc_large_A_source/biomrc-train-00002-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dec1199776246b1b89e16454f3e42a6b43fc5cbb3c84731ab4d880c0da8cc36c
3
+ size 174311975
biomrc_large_A_source/biomrc-train-00003-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ed686f80b58637ba924eb01908e7ad9019218c8d4982780d237a88a1ee64a15
3
+ size 53811094
biomrc_large_A_source/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2f0050435aa683030b97b9a54d3e1d3481c4f9fe9ffbe083e0a797fd31c581e
3
+ size 42074649
biomrc_large_B_bigbio_qa/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e0346ec052eeeffc76f7835eecbef19583b8d1e21fde763766ffaad83b9f3b
3
+ size 44621595
biomrc_large_B_bigbio_qa/biomrc-train-00000-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9274904a18594fc6ba696f4edc4d218d2c16827cea31e07f079b1542c207465
3
+ size 183453315
biomrc_large_B_bigbio_qa/biomrc-train-00001-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e80a743a88d748ecee8fd2188f3e73bbe04f28359351cc317024e25aae3c61f
3
+ size 181824238
biomrc_large_B_bigbio_qa/biomrc-train-00002-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8437ee121b09157343fea9259ce743849b880a9378608265a0417ddd8e78301
3
+ size 130981389
biomrc_large_B_bigbio_qa/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:789591589eeecbc00510f51b1ca13fa923a5a59632893a2d0d5176c5866fe342
3
+ size 36140134
biomrc_large_B_source/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06b5198ab1e5a5d6bc5983ec7138aa5d2f418e73d2a57895533f9cadc839114
3
+ size 43711636
biomrc_large_B_source/biomrc-train-00000-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50522189d846eb85f3439c914afaaff24652f48472fc7a33249a6ec1eec0da7
3
+ size 177596282
biomrc_large_B_source/biomrc-train-00001-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0bfa5b7153b689cc515eaa3e84b68f7d1e22b1845a7648aac993429b22dd495
3
+ size 176662312
biomrc_large_B_source/biomrc-train-00002-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac5755c24d9c8a6593334e4cfa77a72de83145290a5025d0361e85797f89b044
3
+ size 131836504
biomrc_large_B_source/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c8137b8c316007e6b103712f84e07855f1d561562ba5f335d0941dc2da839bd
3
+ size 35415235
biomrc_small_A_bigbio_qa/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:407284b902c491480c678555b8f6a070ca9f82c7b70d0fa2bde4bb75f58c89d9
3
+ size 6624165
biomrc_small_A_bigbio_qa/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa95cde7bfeca0d3df192cf30472780b7ac07896f27e44f7a660c95710f86224
3
+ size 91947743
biomrc_small_A_bigbio_qa/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5624711c2721fbcfcf6ffb31fc5cf355c871fa685bb211ec1c353a1d40aaaec
3
+ size 6666279
biomrc_small_A_source/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dae9a4761d3cf1cba6e928087e22aa9775b4158dd17b662ad304d921971b633
3
+ size 7352986
biomrc_small_A_source/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3895a7f015ad0b1705d7d7cf2ab3163fbd09d430379d715565c91c1a720c5efd
3
+ size 102143974
biomrc_small_A_source/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0139108f05b47450cbcdb97ee70878b0269cb97e457a84a32b93ae5345c35963
3
+ size 7395441
biomrc_small_B_bigbio_qa/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7bf33891500784e59a6707cafe10a61d6d83730f538ab6935ab7f7df0941b0
3
+ size 6338959
biomrc_small_B_bigbio_qa/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a8b97cbbf283e6db9051b564e1d811e04ccd1ee4d6a08e4219c02453091a46d
3
+ size 88008416
biomrc_small_B_bigbio_qa/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e6f0190075a552192ae389ebc5f3e90730672e038d00f5cec38407ea12c78e5
3
+ size 6387874
biomrc_small_B_source/biomrc-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5adf4abc8158037e3f8623b59ec8743270821c4753b46a35af191ec234bf459
3
+ size 6249393
biomrc_small_B_source/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cd47c5741289fda9d95bc137fb7191a23959377282e4a0d7f6b092b82198ba7
3
+ size 86745709
biomrc_small_B_source/biomrc-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea02d7582d4d89c8acb92615ad304e56b61570e8ba48808885122dd28d88eced
3
+ size 6298396
biomrc_tiny_A_bigbio_qa/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23fa0b78e9e0756a293e174e45b92c8484316a52c758790965ec717c8b421e8f
3
+ size 46681
biomrc_tiny_A_source/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a475308bfb5e225e0af86b78b5ca29a2b226bcb9efd50f9682f1b4ac9a1939a1
3
+ size 53587
biomrc_tiny_B_bigbio_qa/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff0caf43d2257e6c31b8e919cd401bad1c9fe61b9dcde84188a65362f3eeb04f
3
+ size 47569
biomrc_tiny_B_source/biomrc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a23895fed47ee25e98cf6e0dcead1431533bf4b5e7d08d9059e13a73168ff9aa
3
+ size 47716