Commit
·
e85b514
1
Parent(s):
3b9f718
upload hubscripts/biomrc_hub.py to hub from bigbio repo
Browse files
biomrc.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the
|
18 |
+
previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the
|
19 |
+
new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating
|
20 |
+
that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is
|
21 |
+
also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new
|
22 |
+
BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or
|
23 |
+
surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different
|
24 |
+
sizes, also releasing our code, and providing a leaderboard.
|
25 |
+
"""
|
26 |
+
|
27 |
+
import itertools as it
|
28 |
+
import json
|
29 |
+
|
30 |
+
import datasets
|
31 |
+
|
32 |
+
from .bigbiohub import qa_features
|
33 |
+
from .bigbiohub import BigBioConfig
|
34 |
+
from .bigbiohub import Tasks
|
35 |
+
|
36 |
+
_LANGUAGES = ['English']
|
37 |
+
_PUBMED = True
|
38 |
+
_LOCAL = False
|
39 |
+
_CITATION = """\
|
40 |
+
@inproceedings{pappas-etal-2020-biomrc,
|
41 |
+
title = "{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension",
|
42 |
+
author = "Pappas, Dimitris and
|
43 |
+
Stavropoulos, Petros and
|
44 |
+
Androutsopoulos, Ion and
|
45 |
+
McDonald, Ryan",
|
46 |
+
booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
|
47 |
+
month = jul,
|
48 |
+
year = "2020",
|
49 |
+
address = "Online",
|
50 |
+
publisher = "Association for Computational Linguistics",
|
51 |
+
url = "https://www.aclweb.org/anthology/2020.bionlp-1.15",
|
52 |
+
pages = "140--149",
|
53 |
+
}
|
54 |
+
"""
|
55 |
+
|
56 |
+
_DATASETNAME = "biomrc"
|
57 |
+
_DISPLAYNAME = "BIOMRC"
|
58 |
+
|
59 |
+
_DESCRIPTION = """\
|
60 |
+
We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the
|
61 |
+
previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the
|
62 |
+
new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating
|
63 |
+
that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is
|
64 |
+
also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new
|
65 |
+
BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or
|
66 |
+
surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different
|
67 |
+
sizes, also releasing our code, and providing a leaderboard.
|
68 |
+
"""
|
69 |
+
|
70 |
+
_HOMEPAGE = "https://github.com/PetrosStav/BioMRC_code"
|
71 |
+
|
72 |
+
_LICENSE = 'License information unavailable'
|
73 |
+
|
74 |
+
_URLS = {
|
75 |
+
"large": {
|
76 |
+
"A": {
|
77 |
+
"train": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_train.json.gz",
|
78 |
+
"val": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_val.json.gz",
|
79 |
+
"test": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_test.json.gz",
|
80 |
+
},
|
81 |
+
"B": {
|
82 |
+
"train": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_train_B.json.gz",
|
83 |
+
"val": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_val_B.json.gz",
|
84 |
+
"test": "https://archive.org/download/biomrc_dataset/biomrc_large/dataset_test_B.json.gz",
|
85 |
+
},
|
86 |
+
},
|
87 |
+
"small": {
|
88 |
+
"A": {
|
89 |
+
"train": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_train_small.json.gz",
|
90 |
+
"val": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_val_small.json.gz",
|
91 |
+
"test": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_test_small.json.gz",
|
92 |
+
},
|
93 |
+
"B": {
|
94 |
+
"train": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_train_small_B.json.gz",
|
95 |
+
"val": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_val_small_B.json.gz",
|
96 |
+
"test": "https://archive.org/download/biomrc_dataset/biomrc_small/dataset_test_small_B.json.gz",
|
97 |
+
},
|
98 |
+
},
|
99 |
+
"tiny": {
|
100 |
+
"A": {
|
101 |
+
"test": "https://archive.org/download/biomrc_dataset/biomrc_tiny/dataset_tiny.json.gz"
|
102 |
+
},
|
103 |
+
"B": {
|
104 |
+
"test": "https://archive.org/download/biomrc_dataset/biomrc_tiny/dataset_tiny_B.json.gz"
|
105 |
+
},
|
106 |
+
},
|
107 |
+
}
|
108 |
+
|
109 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
110 |
+
|
111 |
+
_SOURCE_VERSION = "1.0.0"
|
112 |
+
|
113 |
+
_BIGBIO_VERSION = "1.0.0"
|
114 |
+
|
115 |
+
|
116 |
+
class BiomrcDataset(datasets.GeneratorBasedBuilder):
|
117 |
+
"""BioMRC: A Dataset for Biomedical Machine Reading Comprehension"""
|
118 |
+
|
119 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
120 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
121 |
+
|
122 |
+
BUILDER_CONFIGS = []
|
123 |
+
|
124 |
+
for biomrc_setting in ["A", "B"]:
|
125 |
+
for biomrc_version in ["large", "small", "tiny"]:
|
126 |
+
subset_id = f"biomrc_{biomrc_version}_{biomrc_setting}"
|
127 |
+
BUILDER_CONFIGS.append(
|
128 |
+
BigBioConfig(
|
129 |
+
name=f"{subset_id}_source",
|
130 |
+
version=SOURCE_VERSION,
|
131 |
+
description=f"BioMRC Version {biomrc_version} Setting {biomrc_setting} source schema",
|
132 |
+
schema="source",
|
133 |
+
subset_id=subset_id,
|
134 |
+
)
|
135 |
+
)
|
136 |
+
BUILDER_CONFIGS.append(
|
137 |
+
BigBioConfig(
|
138 |
+
name=f"{subset_id}_bigbio_qa",
|
139 |
+
version=BIGBIO_VERSION,
|
140 |
+
description=f"BioMRC Version {biomrc_version} Setting {biomrc_setting} BigBio schema",
|
141 |
+
schema="bigbio_qa",
|
142 |
+
subset_id=subset_id,
|
143 |
+
)
|
144 |
+
)
|
145 |
+
|
146 |
+
DEFAULT_CONFIG_NAME = "biomrc_large_B_source"
|
147 |
+
|
148 |
+
def _info(self):
|
149 |
+
if self.config.schema == "source":
|
150 |
+
features = datasets.Features(
|
151 |
+
{
|
152 |
+
"abstract": datasets.Value("string"),
|
153 |
+
"title": datasets.Value("string"),
|
154 |
+
"entities_list": datasets.features.Sequence(
|
155 |
+
{
|
156 |
+
"pseudoidentifier": datasets.Value("string"),
|
157 |
+
"identifier": datasets.Value("string"),
|
158 |
+
"synonyms": datasets.Value("string"),
|
159 |
+
}
|
160 |
+
),
|
161 |
+
"answer": {
|
162 |
+
"pseudoidentifier": datasets.Value("string"),
|
163 |
+
"identifier": datasets.Value("string"),
|
164 |
+
"synonyms": datasets.Value("string"),
|
165 |
+
},
|
166 |
+
}
|
167 |
+
)
|
168 |
+
elif self.config.schema == "bigbio_qa":
|
169 |
+
features = qa_features
|
170 |
+
else:
|
171 |
+
raise NotImplementedError()
|
172 |
+
|
173 |
+
return datasets.DatasetInfo(
|
174 |
+
description=_DESCRIPTION,
|
175 |
+
features=features,
|
176 |
+
homepage=_HOMEPAGE,
|
177 |
+
license=str(_LICENSE),
|
178 |
+
citation=_CITATION,
|
179 |
+
)
|
180 |
+
|
181 |
+
def _split_generators(self, dl_manager):
|
182 |
+
"""Returns SplitGenerators."""
|
183 |
+
|
184 |
+
_, version, setting = self.config.subset_id.split("_")
|
185 |
+
downloaded_files = dl_manager.download_and_extract(_URLS[version][setting])
|
186 |
+
|
187 |
+
if version == "tiny":
|
188 |
+
return [
|
189 |
+
datasets.SplitGenerator(
|
190 |
+
name=datasets.Split.TRAIN,
|
191 |
+
gen_kwargs={"filepath": downloaded_files["test"]},
|
192 |
+
),
|
193 |
+
]
|
194 |
+
else:
|
195 |
+
return [
|
196 |
+
datasets.SplitGenerator(
|
197 |
+
name=datasets.Split.TRAIN,
|
198 |
+
gen_kwargs={"filepath": downloaded_files["train"]},
|
199 |
+
),
|
200 |
+
datasets.SplitGenerator(
|
201 |
+
name=datasets.Split.VALIDATION,
|
202 |
+
gen_kwargs={"filepath": downloaded_files["val"]},
|
203 |
+
),
|
204 |
+
datasets.SplitGenerator(
|
205 |
+
name=datasets.Split.TEST,
|
206 |
+
gen_kwargs={"filepath": downloaded_files["test"]},
|
207 |
+
),
|
208 |
+
]
|
209 |
+
|
210 |
+
def _generate_examples(self, filepath):
|
211 |
+
"""Yields examples as (key, example) tuples."""
|
212 |
+
|
213 |
+
if self.config.schema == "source":
|
214 |
+
with open(filepath, encoding="utf-8") as fp:
|
215 |
+
biomrc = json.load(fp)
|
216 |
+
for _id, (ab, ti, el, an) in enumerate(
|
217 |
+
zip(
|
218 |
+
biomrc["abstracts"],
|
219 |
+
biomrc["titles"],
|
220 |
+
biomrc["entities_list"],
|
221 |
+
biomrc["answers"],
|
222 |
+
)
|
223 |
+
):
|
224 |
+
el = [self._parse_dict_from_entity(entity) for entity in el]
|
225 |
+
an = self._parse_dict_from_entity(an)
|
226 |
+
yield _id, {
|
227 |
+
"abstract": ab,
|
228 |
+
"title": ti,
|
229 |
+
"entities_list": el,
|
230 |
+
"answer": an,
|
231 |
+
}
|
232 |
+
elif self.config.schema == "bigbio_qa":
|
233 |
+
with open(filepath, encoding="utf-8") as fp:
|
234 |
+
uid = it.count(0)
|
235 |
+
biomrc = json.load(fp)
|
236 |
+
for _id, (ab, ti, el, an) in enumerate(
|
237 |
+
zip(
|
238 |
+
biomrc["abstracts"],
|
239 |
+
biomrc["titles"],
|
240 |
+
biomrc["entities_list"],
|
241 |
+
biomrc["answers"],
|
242 |
+
)
|
243 |
+
):
|
244 |
+
# remove info such as code, label, synonyms from answer and choices
|
245 |
+
# f.e. @entity1 :: ('9606', 'Species') :: ['patients', 'patient']"
|
246 |
+
example = {
|
247 |
+
"id": next(uid),
|
248 |
+
"question_id": next(uid),
|
249 |
+
"document_id": next(uid),
|
250 |
+
"question": ti,
|
251 |
+
"type": "multiple_choice",
|
252 |
+
"choices": [x.split(" :: ")[0] for x in el],
|
253 |
+
"context": ab,
|
254 |
+
"answer": [an.split(" :: ")[0]],
|
255 |
+
}
|
256 |
+
yield _id, example
|
257 |
+
|
258 |
+
def _parse_dict_from_entity(self, entity):
|
259 |
+
if "::" in entity:
|
260 |
+
pseudoidentifier, identifier, synonyms = entity.split(" :: ")
|
261 |
+
return {
|
262 |
+
"pseudoidentifier": pseudoidentifier,
|
263 |
+
"identifier": identifier,
|
264 |
+
"synonyms": synonyms,
|
265 |
+
}
|
266 |
+
else:
|
267 |
+
return {"pseudoidentifier": entity, "identifier": "", "synonyms": ""}
|