Commit
·
ec55ea7
1
Parent(s):
782e39a
upload hubscripts/cantemist_hub.py to hub from bigbio repo
Browse files- cantemist.py +370 -0
cantemist.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
A dataset loading script for the CANTEMIST corpus.
|
18 |
+
|
19 |
+
The CANTEMIST datset is collection of 1301 oncological clinical case reports
|
20 |
+
written in Spanish, with tumor morphology mentions manually annotated and
|
21 |
+
mapped by clinical experts to a controlled terminology. Every tumor morphology
|
22 |
+
mention is linked to an eCIE-O code (the Spanish equivalent of ICD-O).
|
23 |
+
"""
|
24 |
+
|
25 |
+
import os
|
26 |
+
from pathlib import Path
|
27 |
+
from typing import Dict, List, Tuple
|
28 |
+
|
29 |
+
import datasets
|
30 |
+
import pandas as pd
|
31 |
+
|
32 |
+
from .bigbiohub import kb_features
|
33 |
+
from .bigbiohub import BigBioConfig
|
34 |
+
from .bigbiohub import Tasks
|
35 |
+
|
36 |
+
_LANGUAGES = ['Spanish']
|
37 |
+
_PUBMED = False
|
38 |
+
_LOCAL = False
|
39 |
+
_CITATION = """\
|
40 |
+
@article{miranda2020named,
|
41 |
+
title={Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.},
|
42 |
+
author={Miranda-Escalada, Antonio and Farr{\'e}, Eul{\`a}lia and Krallinger, Martin},
|
43 |
+
journal={IberLEF@ SEPLN},
|
44 |
+
pages={303--323},
|
45 |
+
year={2020}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "cantemist"
|
50 |
+
_DISPLAYNAME = "CANTEMIST"
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
Collection of 1301 oncological clinical case reports written in Spanish, with tumor morphology mentions \
|
54 |
+
manually annotated and mapped by clinical experts to a controlled terminology. Every tumor morphology \
|
55 |
+
mention is linked to an eCIE-O code (the Spanish equivalent of ICD-O).
|
56 |
+
|
57 |
+
The original dataset is distributed in Brat format, and was randomly sampled into 3 subsets. \
|
58 |
+
The training, development and test sets contain 501, 500 and 300 documents each, respectively.
|
59 |
+
|
60 |
+
This dataset was designed for the CANcer TExt Mining Shared Task, sponsored by Plan-TL. \
|
61 |
+
The task is divided in 3 subtasks: CANTEMIST-NER, CANTEMIST_NORM and CANTEMIST-CODING.
|
62 |
+
|
63 |
+
CANTEMIST-NER track: requires finding automatically tumor morphology mentions. All tumor morphology \
|
64 |
+
mentions are defined by their corresponding character offsets in UTF-8 plain text medical documents.
|
65 |
+
|
66 |
+
CANTEMIST-NORM track: clinical concept normalization or named entity normalization task that requires \
|
67 |
+
to return all tumor morphology entity mentions together with their corresponding eCIE-O-3.1 codes \
|
68 |
+
i.e. finding and normalizing tumor morphology mentions.
|
69 |
+
|
70 |
+
CANTEMIST-CODING track: requires returning for each of document a ranked list of its corresponding ICD-O-3 \
|
71 |
+
codes. This it is essentially a sort of indexing or multi-label classification task or oncology clinical coding.
|
72 |
+
|
73 |
+
For further information, please visit https://temu.bsc.es/cantemist or send an email to [email protected]
|
74 |
+
"""
|
75 |
+
|
76 |
+
_HOMEPAGE = "https://temu.bsc.es/cantemist/?p=4338"
|
77 |
+
|
78 |
+
_LICENSE = 'Creative Commons Attribution 4.0 International'
|
79 |
+
|
80 |
+
_URLS = {
|
81 |
+
"cantemist": "https://zenodo.org/record/3978041/files/cantemist.zip?download=1",
|
82 |
+
}
|
83 |
+
|
84 |
+
_SUPPORTED_TASKS = [
|
85 |
+
Tasks.NAMED_ENTITY_RECOGNITION,
|
86 |
+
Tasks.NAMED_ENTITY_DISAMBIGUATION,
|
87 |
+
Tasks.TEXT_CLASSIFICATION,
|
88 |
+
]
|
89 |
+
|
90 |
+
_SOURCE_VERSION = "1.6.0"
|
91 |
+
|
92 |
+
_BIGBIO_VERSION = "1.0.0"
|
93 |
+
|
94 |
+
|
95 |
+
class CantemistDataset(datasets.GeneratorBasedBuilder):
|
96 |
+
"""Manually annotated collection of oncological clinical case reports written in Spanish."""
|
97 |
+
|
98 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
99 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
100 |
+
|
101 |
+
BUILDER_CONFIGS = [
|
102 |
+
BigBioConfig(
|
103 |
+
name="cantemist_source",
|
104 |
+
version=SOURCE_VERSION,
|
105 |
+
description="CANTEMIST source schema",
|
106 |
+
schema="source",
|
107 |
+
subset_id="cantemist",
|
108 |
+
),
|
109 |
+
BigBioConfig(
|
110 |
+
name="cantemist_bigbio_kb",
|
111 |
+
version=BIGBIO_VERSION,
|
112 |
+
description="CANTEMIST BigBio schema for the NER and NED tasks",
|
113 |
+
schema="bigbio_kb",
|
114 |
+
subset_id="subtracks_1_2",
|
115 |
+
),
|
116 |
+
BigBioConfig(
|
117 |
+
name="cantemist_bigbio_text",
|
118 |
+
version=BIGBIO_VERSION,
|
119 |
+
description="CANTEMIST BigBio schema for the CODING task",
|
120 |
+
schema="bigbio_text",
|
121 |
+
subset_id="subtrack_3",
|
122 |
+
),
|
123 |
+
]
|
124 |
+
|
125 |
+
DEFAULT_CONFIG_NAME = "cantemist_source"
|
126 |
+
|
127 |
+
def _info(self) -> datasets.DatasetInfo:
|
128 |
+
|
129 |
+
if self.config.schema == "source":
|
130 |
+
features = datasets.Features(
|
131 |
+
{
|
132 |
+
"id": datasets.Value("string"),
|
133 |
+
"document_id": datasets.Value("string"),
|
134 |
+
"text": datasets.Value("string"),
|
135 |
+
"labels": [datasets.Value("string")], # subtrack 3 codes
|
136 |
+
"text_bound_annotations": [ # T line in brat
|
137 |
+
{
|
138 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
139 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
140 |
+
"type": datasets.Value("string"),
|
141 |
+
"id": datasets.Value("string"),
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"events": [ # E line in brat
|
145 |
+
{
|
146 |
+
"trigger": datasets.Value("string"),
|
147 |
+
"id": datasets.Value("string"),
|
148 |
+
"type": datasets.Value("string"),
|
149 |
+
"arguments": datasets.Sequence(
|
150 |
+
{
|
151 |
+
"role": datasets.Value("string"),
|
152 |
+
"ref_id": datasets.Value("string"),
|
153 |
+
}
|
154 |
+
),
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"relations": [ # R line in brat
|
158 |
+
{
|
159 |
+
"id": datasets.Value("string"),
|
160 |
+
"head": {
|
161 |
+
"ref_id": datasets.Value("string"),
|
162 |
+
"role": datasets.Value("string"),
|
163 |
+
},
|
164 |
+
"tail": {
|
165 |
+
"ref_id": datasets.Value("string"),
|
166 |
+
"role": datasets.Value("string"),
|
167 |
+
},
|
168 |
+
"type": datasets.Value("string"),
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"equivalences": [ # Equiv line in brat
|
172 |
+
{
|
173 |
+
"id": datasets.Value("string"),
|
174 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"attributes": [ # M or A lines in brat
|
178 |
+
{
|
179 |
+
"id": datasets.Value("string"),
|
180 |
+
"type": datasets.Value("string"),
|
181 |
+
"ref_id": datasets.Value("string"),
|
182 |
+
"value": datasets.Value("string"),
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"normalizations": [ # N lines in brat
|
186 |
+
{
|
187 |
+
"id": datasets.Value("string"),
|
188 |
+
"type": datasets.Value("string"),
|
189 |
+
"ref_id": datasets.Value("string"),
|
190 |
+
"resource_name": datasets.Value("string"),
|
191 |
+
"cuid": datasets.Value("string"),
|
192 |
+
"text": datasets.Value("string"),
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"notes": [ # # lines in brat
|
196 |
+
{
|
197 |
+
"id": datasets.Value("string"),
|
198 |
+
"type": datasets.Value("string"),
|
199 |
+
"ref_id": datasets.Value("string"),
|
200 |
+
"text": datasets.Value("string"),
|
201 |
+
}
|
202 |
+
],
|
203 |
+
},
|
204 |
+
)
|
205 |
+
|
206 |
+
elif self.config.schema == "bigbio_kb":
|
207 |
+
features = kb_features
|
208 |
+
|
209 |
+
elif self.config.schema == "bigbio_text":
|
210 |
+
features = text_features
|
211 |
+
|
212 |
+
return datasets.DatasetInfo(
|
213 |
+
description=_DESCRIPTION,
|
214 |
+
features=features,
|
215 |
+
homepage=_HOMEPAGE,
|
216 |
+
license=str(_LICENSE),
|
217 |
+
citation=_CITATION,
|
218 |
+
)
|
219 |
+
|
220 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
221 |
+
"""
|
222 |
+
Downloads/extracts the data to generate the train, validation and test splits.
|
223 |
+
|
224 |
+
Each split is created by instantiating a `datasets.SplitGenerator`, which will
|
225 |
+
call `this._generate_examples` with the keyword arguments in `gen_kwargs`.
|
226 |
+
"""
|
227 |
+
|
228 |
+
data_dir = dl_manager.download_and_extract(_URLS["cantemist"])
|
229 |
+
|
230 |
+
return [
|
231 |
+
datasets.SplitGenerator(
|
232 |
+
name=datasets.Split.TRAIN,
|
233 |
+
gen_kwargs={
|
234 |
+
"filepaths": {
|
235 |
+
"task1": Path(
|
236 |
+
os.path.join(data_dir, "train-set/cantemist-ner")
|
237 |
+
),
|
238 |
+
"task2": Path(
|
239 |
+
os.path.join(data_dir, "train-set/cantemist-norm")
|
240 |
+
),
|
241 |
+
"task3": Path(
|
242 |
+
os.path.join(data_dir, "train-set/cantemist-coding")
|
243 |
+
),
|
244 |
+
},
|
245 |
+
"split": "train",
|
246 |
+
},
|
247 |
+
),
|
248 |
+
datasets.SplitGenerator(
|
249 |
+
name=datasets.Split.TEST,
|
250 |
+
gen_kwargs={
|
251 |
+
"filepaths": {
|
252 |
+
"task1": Path(os.path.join(data_dir, "test-set/cantemist-ner")),
|
253 |
+
"task2": Path(
|
254 |
+
os.path.join(data_dir, "test-set/cantemist-norm")
|
255 |
+
),
|
256 |
+
"task3": Path(
|
257 |
+
os.path.join(data_dir, "test-set/cantemist-coding")
|
258 |
+
),
|
259 |
+
},
|
260 |
+
"split": "test",
|
261 |
+
},
|
262 |
+
),
|
263 |
+
datasets.SplitGenerator(
|
264 |
+
name=datasets.Split.VALIDATION,
|
265 |
+
gen_kwargs={
|
266 |
+
"filepaths": {
|
267 |
+
"task1_set1": Path(
|
268 |
+
os.path.join(data_dir, "dev-set1/cantemist-ner")
|
269 |
+
),
|
270 |
+
"task1_set2": Path(
|
271 |
+
os.path.join(data_dir, "dev-set2/cantemist-ner")
|
272 |
+
),
|
273 |
+
"task2_set1": Path(
|
274 |
+
os.path.join(data_dir, "dev-set1/cantemist-norm")
|
275 |
+
),
|
276 |
+
"task2_set2": Path(
|
277 |
+
os.path.join(data_dir, "dev-set2/cantemist-norm")
|
278 |
+
),
|
279 |
+
"task3_set1": Path(
|
280 |
+
os.path.join(data_dir, "dev-set1/cantemist-coding")
|
281 |
+
),
|
282 |
+
"task3_set2": Path(
|
283 |
+
os.path.join(data_dir, "dev-set2/cantemist-coding")
|
284 |
+
),
|
285 |
+
},
|
286 |
+
"split": "dev",
|
287 |
+
},
|
288 |
+
),
|
289 |
+
]
|
290 |
+
|
291 |
+
def _generate_examples(self, filepaths, split: str) -> Tuple[int, Dict]:
|
292 |
+
"""
|
293 |
+
This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
294 |
+
Method parameters are unpacked from `gen_kwargs` as given in `_split_generators`.
|
295 |
+
"""
|
296 |
+
|
297 |
+
if split != "dev":
|
298 |
+
txt_files_task1 = list(filepaths["task1"].glob("*txt"))
|
299 |
+
txt_files_task2 = list(filepaths["task2"].glob("*txt"))
|
300 |
+
tsv_file_task3 = Path(
|
301 |
+
os.path.join(filepaths["task3"], f"{split}-coding.tsv")
|
302 |
+
)
|
303 |
+
task3_df = pd.read_csv(tsv_file_task3, sep="\t", header=None)
|
304 |
+
else:
|
305 |
+
txt_files_task1, txt_files_task2, dfs = [], [], []
|
306 |
+
for i in range(1, 3):
|
307 |
+
txt_files_task1 += list(filepaths[f"task1_set{i}"].glob("*txt"))
|
308 |
+
txt_files_task2 += list(filepaths[f"task2_set{i}"].glob("*txt"))
|
309 |
+
tsv_file_task3 = Path(
|
310 |
+
os.path.join(filepaths[f"task3_set{i}"], f"{split}{i}-coding.tsv")
|
311 |
+
)
|
312 |
+
df = pd.read_csv(tsv_file_task3, sep="\t", header=0)
|
313 |
+
dfs.append(df)
|
314 |
+
task3_df = pd.concat(dfs)
|
315 |
+
|
316 |
+
if self.config.schema == "source" or self.config.schema == "bigbio_text":
|
317 |
+
task3_dict = {}
|
318 |
+
for idx, row in task3_df.iterrows():
|
319 |
+
file, code = row[0], row[1]
|
320 |
+
if file not in task3_dict:
|
321 |
+
task3_dict[file] = [code]
|
322 |
+
else:
|
323 |
+
task3_dict[file] += [code]
|
324 |
+
|
325 |
+
if self.config.schema == "source":
|
326 |
+
for guid, txt_file in enumerate(txt_files_task2):
|
327 |
+
example = parsing.parse_brat_file(txt_file, parse_notes=True)
|
328 |
+
if example["document_id"] in task3_dict:
|
329 |
+
example["labels"] = task3_dict[example["document_id"]]
|
330 |
+
else:
|
331 |
+
example[
|
332 |
+
"labels"
|
333 |
+
] = (
|
334 |
+
[]
|
335 |
+
) # few cases where subtrack 3 has no codes for the current document
|
336 |
+
example["id"] = str(guid)
|
337 |
+
yield guid, example
|
338 |
+
|
339 |
+
elif self.config.schema == "bigbio_kb":
|
340 |
+
for guid, txt_file in enumerate(txt_files_task2):
|
341 |
+
parsed_brat = parsing.parse_brat_file(txt_file, parse_notes=True)
|
342 |
+
example = parsing.brat_parse_to_bigbio_kb(parsed_brat)
|
343 |
+
example["id"] = str(guid)
|
344 |
+
for i in range(0, len(example["entities"])):
|
345 |
+
normalized_dict = {
|
346 |
+
"db_id": parsed_brat["notes"][i]["text"],
|
347 |
+
"db_name": "eCIE-O-3.1",
|
348 |
+
}
|
349 |
+
example["entities"][i]["normalized"].append(normalized_dict)
|
350 |
+
yield guid, example
|
351 |
+
|
352 |
+
elif self.config.schema == "bigbio_text":
|
353 |
+
for guid, txt_file in enumerate(txt_files_task1):
|
354 |
+
parsed_brat = parsing.parse_brat_file(txt_file, parse_notes=False)
|
355 |
+
if parsed_brat["document_id"] in task3_dict:
|
356 |
+
labels = task3_dict[parsed_brat["document_id"]]
|
357 |
+
else:
|
358 |
+
labels = (
|
359 |
+
[]
|
360 |
+
) # few cases where subtrack 3 has no codes for the current document
|
361 |
+
example = {
|
362 |
+
"id": str(guid),
|
363 |
+
"document_id": parsed_brat["document_id"],
|
364 |
+
"text": parsed_brat["text"],
|
365 |
+
"labels": labels,
|
366 |
+
}
|
367 |
+
yield guid, example
|
368 |
+
|
369 |
+
else:
|
370 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|