File size: 9,853 Bytes
20bf954 c2d7dc4 20bf954 c2d7dc4 20bf954 c2d7dc4 20bf954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The CellFinder project aims to create a stem cell data repository by linking
information from existing public databases and by performing text mining on the
research literature. The first version of the corpus is composed of 10 full text
documents containing more than 2,100 sentences, 65,000 tokens and 5,200
annotations for entities. The corpus has been annotated with six types of
entities (anatomical parts, cell components, cell lines, cell types,
genes/protein and species) with an overall inter-annotator agreement around 80%.
See: https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/
"""
from pathlib import Path
from typing import Dict, Iterator, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{neves2012annotating,
title = {Annotating and evaluating text for stem cell research},
author = {Neves, Mariana and Damaschun, Alexander and Kurtz, Andreas and Leser, Ulf},
year = 2012,
booktitle = {
Proceedings of the Third Workshop on Building and Evaluation Resources for
Biomedical Text Mining\ (BioTxtM 2012) at Language Resources and Evaluation
(LREC). Istanbul, Turkey
},
pages = {16--23},
organization = {Citeseer}
}
"""
_DATASETNAME = "cellfinder"
_DISPLAYNAME = "CellFinder"
_DESCRIPTION = """\
The CellFinder project aims to create a stem cell data repository by linking \
information from existing public databases and by performing text mining on the \
research literature. The first version of the corpus is composed of 10 full text \
documents containing more than 2,100 sentences, 65,000 tokens and 5,200 \
annotations for entities. The corpus has been annotated with six types of \
entities (anatomical parts, cell components, cell lines, cell types, \
genes/protein and species) with an overall inter-annotator agreement around 80%.
See: https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/
"""
_HOMEPAGE = (
"https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/"
)
_LICENSE = 'Creative Commons Attribution Share Alike 3.0 Unported'
_SOURCE_URL = (
"https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/"
)
_URLS = {
_DATASETNAME: _SOURCE_URL + "cellfinder1_brat.tar.gz",
_DATASETNAME + "_splits": _SOURCE_URL + "cellfinder1_brat_sections.tar.gz",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class CellFinderDataset(datasets.GeneratorBasedBuilder):
"""The CellFinder corpus."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="cellfinder_source",
version=SOURCE_VERSION,
description="CellFinder source schema",
schema="source",
subset_id="cellfinder",
),
BigBioConfig(
name="cellfinder_bigbio_kb",
version=BIGBIO_VERSION,
description="CellFinder BigBio schema",
schema="bigbio_kb",
subset_id="cellfinder",
),
BigBioConfig(
name="cellfinder_splits_source",
version=SOURCE_VERSION,
description="CellFinder source schema",
schema="source",
subset_id="cellfinder_splits",
),
BigBioConfig(
name="cellfinder_splits_bigbio_kb",
version=BIGBIO_VERSION,
description="CellFinder BigBio schema",
schema="bigbio_kb",
subset_id="cellfinder_splits",
),
]
DEFAULT_CONFIG_NAME = "cellfinder_source"
SPLIT_TO_IDS = {
"train": [16316465, 17381551, 17389645, 18162134, 18286199],
"test": [15971941, 16623949, 16672070, 17288595, 17967047],
}
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"entities": [
{
"entity_id": datasets.Value("string"),
"type": datasets.Value("string"),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"text": datasets.Sequence(datasets.Value("string")),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[_DATASETNAME]
if self.config.subset_id.endswith("_splits"):
urls = _URLS[_DATASETNAME + "_splits"]
data_dir = Path(dl_manager.download_and_extract(urls))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_dir": data_dir, "split": "test"},
),
]
def _is_to_exclude(self, file: Path) -> bool:
to_exclude = False
if (
file.name.startswith("._")
or file.name.endswith(".ann")
or file.name == "LICENSE"
):
to_exclude = True
return to_exclude
def _not_in_split(self, file: Path, split: str) -> bool:
to_exclude = False
# SKIP files according to split
if self.config.subset_id.endswith("_splits"):
file_id = file.stem.split("_")[0]
else:
file_id = file.stem
if int(file_id) not in self.SPLIT_TO_IDS[split]:
to_exclude = True
return to_exclude
def _generate_examples(
self, data_dir: Path, split: str
) -> Iterator[Tuple[str, Dict]]:
if self.config.schema == "source":
for file in data_dir.iterdir():
# Ignore hidden files and annotation files - we just consider the brat text files
if self._is_to_exclude(file=file):
continue
if self._not_in_split(file=file, split=split):
continue
# Read brat annotations for the given text file and convert example to the source format
brat_example = parse_brat_file(file)
source_example = self._to_source_example(file, brat_example)
yield source_example["document_id"], source_example
elif self.config.schema == "bigbio_kb":
for file in data_dir.iterdir():
# Ignore hidden files and annotation files - we just consider the brat text files
if self._is_to_exclude(file=file):
continue
if self._not_in_split(file=file, split=split):
continue
# Read brat annotations for the given text file and convert example to the BigBio-KB format
brat_example = parse_brat_file(file)
kb_example = brat_parse_to_bigbio_kb(brat_example)
kb_example["id"] = kb_example["document_id"]
# Fix text type annotation for the converted example
kb_example["passages"][0]["type"] = self.get_text_type(file)
yield kb_example["id"], kb_example
def _to_source_example(self, input_file: Path, brat_example: Dict) -> Dict:
"""
Converts an example extracted using the default brat parsing logic to the source format
of the given corpus.
"""
text_type = self.get_text_type(input_file)
source_example = {
"document_id": brat_example["document_id"],
"text": brat_example["text"],
"type": text_type,
}
id_prefix = brat_example["document_id"] + "_"
source_example["entities"] = []
for entity_annotation in brat_example["text_bound_annotations"]:
entity_ann = entity_annotation.copy()
entity_ann["entity_id"] = id_prefix + entity_ann["id"]
entity_ann.pop("id")
source_example["entities"].append(entity_ann)
return source_example
def get_text_type(self, input_file: Path) -> str:
"""
Exctracts section name from filename, if absent return full_text
"""
name_parts = str(input_file.stem).split("_")
if len(name_parts) == 3:
return name_parts[2]
return "full_text"
|