|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This is a public release of the ChemDisGene dataset, a collection of biomedical |
|
research abstracts annotated with mentions of chemical, disease and gene/gene-product |
|
entities, and pairwise relationships between those entities. |
|
""" |
|
import datasets |
|
import itertools |
|
|
|
from bioc import pubtator |
|
from collections import defaultdict |
|
from pathlib import Path |
|
from typing import Dict, Iterator, List |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@InProceedings{zhang-etal:2022:LREC, |
|
author = {Dongxu Zhang and Sunil Mohan and Michaela Torkar and Andrew McCallum}, |
|
title = {A Distant Supervision Corpus for Extracting Biomedical Relationships Between Chemicals, Diseases and Genes}, |
|
booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference}, |
|
month = {June}, |
|
year = {2022}, |
|
address = {Marseille, France}, |
|
publisher = {European Language Resources Association}, |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
The ChemDisGene dataset is a collection of biomedical research abstracts annotated with |
|
mentions of chemical, disease and gene/gene-product entities, and pairwise relationships |
|
between those entities. |
|
""" |
|
|
|
_DATASETNAME = "chem_dis_gene" |
|
_DISPLAYNAME = "ChemDisGene" |
|
|
|
_HOMEPAGE = "https://github.com/chanzuckerberg/ChemDisGene" |
|
|
|
_LICENSE = 'CC0_1p0' |
|
|
|
_URLs = { |
|
"curated": { |
|
"rel_ctd": "https://github.com/chanzuckerberg/ChemDisGene/raw/master/data/curated/approved_relns_ctd_v1.tsv.gz", |
|
"rel_new": "https://github.com/chanzuckerberg/ChemDisGene/raw/master/data/curated/approved_relns_new_v1.tsv.gz", |
|
"abstracts": "https://github.com/chanzuckerberg/ChemDisGene/raw/master/data/curated/abstracts.txt.gz" |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.RELATION_EXTRACTION, |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION |
|
] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class ChemDisGeneDataset(datasets.GeneratorBasedBuilder): |
|
"""ChemDisGene dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="chem_dis_gene_source", |
|
version=BIGBIO_VERSION, |
|
description="ChemDisGene source schema", |
|
schema="source", |
|
subset_id="chem_dis_gene", |
|
), |
|
BigBioConfig( |
|
name="chem_dis_gene_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="ChemDisGene BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="chem_dis_gene", |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "chem_dis_gene_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
elif self.config.schema == "source": |
|
features = datasets.Features({ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"passages": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1": datasets.Value("string"), |
|
"arg2": datasets.Value("string"), |
|
} |
|
], |
|
}) |
|
|
|
else: |
|
raise NotImplementedError() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_files = {} |
|
for key, url in _URLs["curated"].items(): |
|
data_files[key] = Path(dl_manager.download_and_extract(url)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_files": data_files}, |
|
) |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
data_files: Dict[str, Path] |
|
): |
|
abstracts = self._pubtator_to_bigbio_kb(data_files["abstracts"]) |
|
document_to_relations = self._read_relations([data_files["rel_ctd"], data_files["rel_new"]]) |
|
|
|
if self.config.schema == "source": |
|
for instance in abstracts: |
|
instance["relations"] = document_to_relations[instance["id"]] |
|
|
|
del instance["events"] |
|
del instance["coreferences"] |
|
|
|
yield instance["id"], instance |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for instance in abstracts: |
|
db_id_to_entity_ids = defaultdict(list) |
|
for entity in instance["entities"]: |
|
for db_norm in entity["normalized"]: |
|
entity_db_id = f"{db_norm['db_name']}:{db_norm['db_id']}" |
|
db_id_to_entity_ids[entity_db_id].append(entity["id"]) |
|
|
|
relations = document_to_relations[instance["id"]] |
|
|
|
bigbio_relations = [] |
|
id_counter = itertools.count() |
|
|
|
|
|
|
|
|
|
for relation in relations: |
|
relation_type = relation["type"] |
|
|
|
arg1_entity_ids = db_id_to_entity_ids[relation["arg1"]] |
|
arg2_entity_ids = db_id_to_entity_ids[relation["arg2"]] |
|
|
|
bigbio_relations.extend([ |
|
{ |
|
"id": instance["id"] + "_r_" + str(next(id_counter)), |
|
"type": relation_type, |
|
"arg1_id": arg1, |
|
"arg2_id": arg2, |
|
"normalized": [] |
|
} |
|
for arg1 in arg1_entity_ids |
|
for arg2 in arg2_entity_ids |
|
]) |
|
|
|
instance["relations"] = bigbio_relations |
|
|
|
yield instance["id"], instance |
|
|
|
else: |
|
raise AssertionError(f"Unsupported schema {self.config.name}") |
|
|
|
@staticmethod |
|
def _read_relations(relation_files: List[Path]) -> Dict[str, List[Dict]]: |
|
relations = defaultdict(list) |
|
uid = itertools.count() |
|
|
|
for relation_file in relation_files: |
|
with relation_file.open("r", encoding="utf8") as file: |
|
for line in file.readlines(): |
|
line = line.strip() |
|
if not line: |
|
continue |
|
|
|
pmid, relation_type, arg1, arg2 = line.split("\t") |
|
arg1 = arg1 if not arg1.isnumeric() else f"NCBI:{arg1}" |
|
arg2 = arg2 if not arg2.isnumeric() else f"NCBI:{arg2}" |
|
|
|
relations[pmid].append({ |
|
"id": str(next(uid)), |
|
"type": relation_type, |
|
"arg1": arg1, |
|
"arg2": arg2 |
|
}) |
|
|
|
return relations |
|
|
|
@staticmethod |
|
def _pubtator_to_bigbio_kb(abstracts_file: Path) -> Iterator[Dict]: |
|
with abstracts_file.open("r", encoding="utf8") as f: |
|
example = {} |
|
|
|
for doc in pubtator.iterparse(f): |
|
example["id"] = doc.pmid |
|
example["document_id"] = doc.pmid |
|
|
|
example["passages"] = [ |
|
{ |
|
"id": doc.pmid + "_title", |
|
"type": "title", |
|
"text": [doc.title], |
|
"offsets": [[0, len(doc.title)]], |
|
}, |
|
{ |
|
"id": doc.pmid + "_abstract", |
|
"type": "abstract", |
|
"text": [doc.abstract], |
|
"offsets": [ |
|
[ |
|
|
|
len(doc.title) + 1, |
|
len(doc.title) + 1 + len(doc.abstract), |
|
] |
|
], |
|
}, |
|
] |
|
|
|
unified_entities = [] |
|
for i, entity in enumerate(doc.annotations): |
|
|
|
|
|
unified_entity_id = "_".join([doc.pmid, "e", str(i)]) |
|
normalized = [] |
|
|
|
for x in entity.id.split("|"): |
|
if x == "-": |
|
continue |
|
|
|
low_x = x.lower() |
|
if low_x.startswith("omim") or low_x.startswith("mesh"): |
|
db_name, db_id = x.strip().split(":") |
|
normalized.append({"db_name": db_name, "db_id": db_id}) |
|
elif x.isnumeric(): |
|
normalized.append({"db_name": "NCBI", "db_id": x}) |
|
else: |
|
raise AssertionError("The database id should either be a MESH/OMIM or a NCBI gene id!") |
|
|
|
unified_entities.append( |
|
{ |
|
"id": unified_entity_id, |
|
"type": entity.type, |
|
"text": [entity.text], |
|
"offsets": [[entity.start, entity.end]], |
|
"normalized": normalized, |
|
} |
|
) |
|
|
|
example["entities"] = unified_entities |
|
example["relations"] = [] |
|
example["events"] = [] |
|
example["coreferences"] = [] |
|
|
|
yield example |
|
|