|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
from typing import Dict, Iterator, List, Tuple |
|
|
|
import bioc |
|
import datasets |
|
from bioc import biocxml |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import get_texts_and_offsets_from_bioc_ann |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{Krallinger2015, |
|
title = {The CHEMDNER corpus of chemicals and drugs and its annotation principles}, |
|
author = { |
|
Krallinger, Martin and Rabal, Obdulia and Leitner, Florian and Vazquez, |
|
Miguel and Salgado, David and Lu, Zhiyong and Leaman, Robert and Lu, Yanan |
|
and Ji, Donghong and Lowe, Daniel M. and Sayle, Roger A. and |
|
Batista-Navarro, Riza Theresa and Rak, Rafal and Huber, Torsten and |
|
Rockt{\"a}schel, Tim and Matos, S{\'e}rgio and Campos, David and Tang, |
|
Buzhou and Xu, Hua and Munkhdalai, Tsendsuren and Ryu, Keun Ho and Ramanan, |
|
S. V. and Nathan, Senthil and {\v{Z}}itnik, Slavko and Bajec, Marko and |
|
Weber, Lutz and Irmer, Matthias and Akhondi, Saber A. and Kors, Jan A. and |
|
Xu, Shuo and An, Xin and Sikdar, Utpal Kumar and Ekbal, Asif and Yoshioka, |
|
Masaharu and Dieb, Thaer M. and Choi, Miji and Verspoor, Karin and Khabsa, |
|
Madian and Giles, C. Lee and Liu, Hongfang and Ravikumar, Komandur |
|
Elayavilli and Lamurias, Andre and Couto, Francisco M. and Dai, Hong-Jie |
|
and Tsai, Richard Tzong-Han and Ata, Caglar and Can, Tolga and Usi{\'e}, |
|
Anabel and Alves, Rui and Segura-Bedmar, Isabel and Mart{\'i}nez, Paloma |
|
and Oyarzabal, Julen and Valencia, Alfonso |
|
}, |
|
year = 2015, |
|
month = {Jan}, |
|
day = 19, |
|
journal = {Journal of Cheminformatics}, |
|
volume = 7, |
|
number = 1, |
|
pages = {S2}, |
|
doi = {10.1186/1758-2946-7-S1-S2}, |
|
issn = {1758-2946}, |
|
url = {https://doi.org/10.1186/1758-2946-7-S1-S2}, |
|
abstract = { |
|
The automatic extraction of chemical information from text requires the |
|
recognition of chemical entity mentions as one of its key steps. When |
|
developing supervised named entity recognition (NER) systems, the |
|
availability of a large, manually annotated text corpus is desirable. |
|
Furthermore, large corpora permit the robust evaluation and comparison of |
|
different approaches that detect chemicals in documents. We present the |
|
CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a |
|
total of 84,355 chemical entity mentions labeled manually by expert |
|
chemistry literature curators, following annotation guidelines specifically |
|
defined for this task. The abstracts of the CHEMDNER corpus were selected |
|
to be representative for all major chemical disciplines. Each of the |
|
chemical entity mentions was manually labeled according to its |
|
structure-associated chemical entity mention (SACEM) class: abbreviation, |
|
family, formula, identifier, multiple, systematic and trivial. The |
|
difficulty and consistency of tagging chemicals in text was measured using |
|
an agreement study between annotators, obtaining a percentage agreement of |
|
91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) |
|
we provide not only the Gold Standard manual annotations, but also mentions |
|
automatically detected by the 26 teams that participated in the BioCreative |
|
IV CHEMDNER chemical mention recognition task. In addition, we release the |
|
CHEMDNER silver standard corpus of automatically extracted mentions from |
|
17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus |
|
in the BioC format has been generated as well. We propose a standard for |
|
required minimum information about entity annotations for the construction |
|
of domain specific corpora on chemical and drug entities. The CHEMDNER |
|
corpus and annotation guidelines are available at: |
|
ttp://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/ |
|
} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that |
|
contain a total of 84,355 chemical entity mentions labeled manually by expert |
|
chemistry literature curators, following annotation guidelines specifically |
|
defined for this task. The abstracts of the CHEMDNER corpus were selected to be |
|
representative for all major chemical disciplines. Each of the chemical entity |
|
mentions was manually labeled according to its structure-associated chemical |
|
entity mention (SACEM) class: abbreviation, family, formula, identifier, |
|
multiple, systematic and trivial. |
|
""" |
|
|
|
_DATASETNAME = "chemdner" |
|
_DISPLAYNAME = "CHEMDNER" |
|
|
|
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLs = { |
|
"source": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-CHEMDNER-corpus_v2.BioC.xml.gz", |
|
"bigbio_kb": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-CHEMDNER-corpus_v2.BioC.xml.gz", |
|
"bigbio_text": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-CHEMDNER-corpus_v2.BioC.xml.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.TEXT_CLASSIFICATION, |
|
] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class CHEMDNERDataset(datasets.GeneratorBasedBuilder): |
|
"""CHEMDNER""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="chemdner_source", |
|
version=SOURCE_VERSION, |
|
description="CHEMDNER source schema", |
|
schema="source", |
|
subset_id="chemdner", |
|
), |
|
BigBioConfig( |
|
name="chemdner_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="CHEMDNER BigBio schema (KB)", |
|
schema="bigbio_kb", |
|
subset_id="chemdner", |
|
), |
|
BigBioConfig( |
|
name="chemdner_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="CHEMDNER BigBio schema (TEXT)", |
|
schema="bigbio_text", |
|
subset_id="chemdner", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "chemdner_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"passages": [ |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offset": datasets.Value("int32"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"offsets": [[datasets.Value("int32")]], |
|
"text": [datasets.Value("string")], |
|
"type": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
] |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
my_urls = _URLs[self.config.schema] |
|
data_dir = dl_manager.download_and_extract(my_urls) + "/" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "BC7T2-CHEMDNER-corpus-training.BioC.xml" |
|
), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "BC7T2-CHEMDNER-corpus-evaluation.BioC.xml" |
|
), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "BC7T2-CHEMDNER-corpus-development.BioC.xml" |
|
), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _get_passages_and_entities( |
|
self, d: bioc.BioCDocument |
|
) -> Tuple[List[Dict], List[List[Dict]]]: |
|
|
|
passages: List[Dict] = [] |
|
entities: List[List[Dict]] = [] |
|
|
|
text_total_length = 0 |
|
|
|
po_start = 0 |
|
|
|
for i, p in enumerate(d.passages): |
|
|
|
eo = p.offset - text_total_length |
|
|
|
text_total_length += len(p.text) + 1 |
|
|
|
po_end = po_start + len(p.text) |
|
|
|
dp = { |
|
"text": p.text, |
|
"type": p.infons.get("type"), |
|
"offsets": [(po_start, po_end)], |
|
"offset": p.offset, |
|
} |
|
|
|
po_start = po_end + 1 |
|
|
|
passages.append(dp) |
|
|
|
pe = [] |
|
|
|
for a in p.annotations: |
|
|
|
a_type = a.infons.get("type") |
|
|
|
if ( |
|
self.config.schema == "bigbio_kb" |
|
and a_type == "MeSH_Indexing_Chemical" |
|
): |
|
continue |
|
|
|
if ( |
|
a.text == None or a.text == "" |
|
) and self.config.schema == "bigbio_kb": |
|
continue |
|
|
|
offsets, text = get_texts_and_offsets_from_bioc_ann(a) |
|
|
|
da = { |
|
"type": a_type, |
|
"offsets": [(start - eo, end - eo) for (start, end) in offsets], |
|
"text": text, |
|
"id": a.id, |
|
"normalized": self._get_normalized(a), |
|
} |
|
|
|
pe.append(da) |
|
|
|
entities.append(pe) |
|
|
|
return passages, entities |
|
|
|
def _get_normalized(self, a: bioc.BioCAnnotation) -> List[Dict]: |
|
""" |
|
Get normalization DB and ID from annotation identifiers |
|
""" |
|
|
|
identifiers = a.infons.get("identifier") |
|
|
|
if identifiers is not None: |
|
|
|
identifiers = re.split(r",|;", identifiers) |
|
|
|
identifiers = [i for i in identifiers if i != "-"] |
|
|
|
normalized = [i.split(":") for i in identifiers] |
|
|
|
normalized = [ |
|
{"db_name": elems[0], "db_id": elems[1]} for elems in normalized |
|
] |
|
|
|
else: |
|
|
|
|
|
normalized = [] |
|
|
|
return normalized |
|
|
|
def _get_textcls_example(self, d: bioc.BioCDocument) -> Dict: |
|
|
|
example = {"document_id": d.id, "text": [], "labels": []} |
|
|
|
for p in d.passages: |
|
|
|
example["text"].append(p.text) |
|
|
|
for a in p.annotations: |
|
|
|
if a.infons.get("type") == "MeSH_Indexing_Chemical": |
|
|
|
example["labels"].append(a.infons.get("identifier")) |
|
|
|
example["text"] = " ".join(example["text"]) |
|
|
|
return example |
|
|
|
def _generate_examples( |
|
self, |
|
filepath: str, |
|
split: str, |
|
) -> Iterator[Tuple[int, Dict]]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
reader = biocxml.BioCXMLDocumentReader(str(filepath)) |
|
|
|
if self.config.schema == "source": |
|
|
|
for uid, doc in enumerate(reader): |
|
|
|
passages, passages_entities = self._get_passages_and_entities(doc) |
|
|
|
for p, pe in zip(passages, passages_entities): |
|
|
|
p.pop("offsets") |
|
|
|
p["document_id"] = doc.id |
|
p["entities"] = pe |
|
|
|
yield uid, {"passages": passages} |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
|
|
uid = 0 |
|
|
|
for idx, doc in enumerate(reader): |
|
|
|
passages, passages_entities = self._get_passages_and_entities(doc) |
|
|
|
|
|
uid += 1 |
|
|
|
|
|
entities = [e for pe in passages_entities for e in pe] |
|
|
|
for p in passages: |
|
p.pop("offset") |
|
p["text"] = (p["text"],) |
|
p["id"] = uid |
|
uid += 1 |
|
|
|
for e in entities: |
|
e["id"] = uid |
|
uid += 1 |
|
|
|
yield idx, { |
|
"id": uid, |
|
"document_id": doc.id, |
|
"passages": passages, |
|
"entities": entities, |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|
|
elif self.config.schema == "bigbio_text": |
|
|
|
uid = 0 |
|
|
|
for idx, doc in enumerate(reader): |
|
|
|
example = self._get_textcls_example(doc) |
|
example["id"] = uid |
|
|
|
|
|
uid += 1 |
|
|
|
yield idx, example |
|
|