Commit
·
08eda35
1
Parent(s):
6b5366a
upload hubscripts/chia_hub.py to hub from bigbio repo
Browse files
chia.py
ADDED
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
A large annotated corpus of patient eligibility criteria extracted from 1,000
|
17 |
+
interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This
|
18 |
+
dataset includes 12,409 annotated eligibility criteria, represented by 41,487
|
19 |
+
distinctive entities of 15 entity types and 25,017 relationships of 12
|
20 |
+
relationship types."""
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Dict, Iterator, List, Tuple
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
from .bigbiohub import kb_features
|
27 |
+
from .bigbiohub import BigBioConfig
|
28 |
+
from .bigbiohub import Tasks
|
29 |
+
|
30 |
+
_LANGUAGES = ['English']
|
31 |
+
_PUBMED = False
|
32 |
+
_LOCAL = False
|
33 |
+
_CITATION = """\
|
34 |
+
@article{kury2020chia,
|
35 |
+
title = {Chia, a large annotated corpus of clinical trial eligibility criteria},
|
36 |
+
author = {
|
37 |
+
Kury, Fabr{\'\\i}cio and Butler, Alex and Yuan, Chi and Fu, Li-heng and
|
38 |
+
Sun, Yingcheng and Liu, Hao and Sim, Ida and Carini, Simona and Weng,
|
39 |
+
Chunhua
|
40 |
+
},
|
41 |
+
year = 2020,
|
42 |
+
journal = {Scientific data},
|
43 |
+
publisher = {Nature Publishing Group},
|
44 |
+
volume = 7,
|
45 |
+
number = 1,
|
46 |
+
pages = {1--11}
|
47 |
+
}
|
48 |
+
"""
|
49 |
+
|
50 |
+
_DATASETNAME = "chia"
|
51 |
+
_DISPLAYNAME = "CHIA"
|
52 |
+
|
53 |
+
_DESCRIPTION = """\
|
54 |
+
A large annotated corpus of patient eligibility criteria extracted from 1,000
|
55 |
+
interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This
|
56 |
+
dataset includes 12,409 annotated eligibility criteria, represented by 41,487
|
57 |
+
distinctive entities of 15 entity types and 25,017 relationships of 12
|
58 |
+
relationship types.
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "https://github.com/WengLab-InformaticsResearch/CHIA"
|
62 |
+
|
63 |
+
_LICENSE = 'Creative Commons Attribution 4.0 International'
|
64 |
+
|
65 |
+
_URLS = {
|
66 |
+
_DATASETNAME: "https://figshare.com/ndownloader/files/21728850",
|
67 |
+
_DATASETNAME + "_wo_scope": "https://figshare.com/ndownloader/files/21728853",
|
68 |
+
}
|
69 |
+
|
70 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
71 |
+
|
72 |
+
_SOURCE_VERSION = "2.0.0"
|
73 |
+
_BIGBIO_VERSION = "1.0.0"
|
74 |
+
|
75 |
+
# For further information see appendix of the publication
|
76 |
+
_DOMAIN_ENTITY_TYPES = [
|
77 |
+
"Condition",
|
78 |
+
"Device",
|
79 |
+
"Drug",
|
80 |
+
"Measurement",
|
81 |
+
"Observation",
|
82 |
+
"Person",
|
83 |
+
"Procedure",
|
84 |
+
"Visit",
|
85 |
+
]
|
86 |
+
|
87 |
+
# For further information see appendix of the publication
|
88 |
+
_FIELD_ENTITY_TYPES = [
|
89 |
+
"Temporal",
|
90 |
+
"Value",
|
91 |
+
]
|
92 |
+
|
93 |
+
# For further information see appendix of the publication
|
94 |
+
_CONSTRUCT_ENTITY_TYPES = [
|
95 |
+
"Scope", # Not part of the "without scope" schema / version
|
96 |
+
"Negation",
|
97 |
+
"Multiplier",
|
98 |
+
"Qualifier",
|
99 |
+
"Reference_point",
|
100 |
+
"Mood",
|
101 |
+
]
|
102 |
+
|
103 |
+
_ALL_ENTITY_TYPES = _DOMAIN_ENTITY_TYPES + _FIELD_ENTITY_TYPES + _CONSTRUCT_ENTITY_TYPES
|
104 |
+
|
105 |
+
_RELATION_TYPES = [
|
106 |
+
"AND",
|
107 |
+
"OR",
|
108 |
+
"SUBSUMES",
|
109 |
+
"HAS_NEGATION",
|
110 |
+
"HAS_MULTIPLIER",
|
111 |
+
"HAS_QUALIFIER",
|
112 |
+
"HAS_VALUE",
|
113 |
+
"HAS_TEMPORAL",
|
114 |
+
"HAS_INDEX",
|
115 |
+
"HAS_MOOD",
|
116 |
+
"HAS_CONTEXT ",
|
117 |
+
"HAS_SCOPE", # Not part of the "without scope" schema / version
|
118 |
+
]
|
119 |
+
|
120 |
+
_MAX_OFFSET_CORRECTION = 100
|
121 |
+
|
122 |
+
|
123 |
+
class ChiaDataset(datasets.GeneratorBasedBuilder):
|
124 |
+
"""
|
125 |
+
A large annotated corpus of patient eligibility criteria extracted from 1,000 interventional,
|
126 |
+
Phase IV clinical trials registered in ClinicalTrials.gov.
|
127 |
+
"""
|
128 |
+
|
129 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
130 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
131 |
+
|
132 |
+
BUILDER_CONFIGS = [
|
133 |
+
BigBioConfig(
|
134 |
+
name="chia_source",
|
135 |
+
version=SOURCE_VERSION,
|
136 |
+
description="Chia source schema",
|
137 |
+
schema="source",
|
138 |
+
subset_id="chia",
|
139 |
+
),
|
140 |
+
BigBioConfig(
|
141 |
+
name="chia_fixed_source",
|
142 |
+
version=SOURCE_VERSION,
|
143 |
+
description="Chia source schema (with fixed entity offsets)",
|
144 |
+
schema="source",
|
145 |
+
subset_id="chia_fixed",
|
146 |
+
),
|
147 |
+
BigBioConfig(
|
148 |
+
name="chia_without_scope_source",
|
149 |
+
version=SOURCE_VERSION,
|
150 |
+
description="Chia without scope source schema",
|
151 |
+
schema="source",
|
152 |
+
subset_id="chia_without_scope",
|
153 |
+
),
|
154 |
+
BigBioConfig(
|
155 |
+
name="chia_without_scope_fixed_source",
|
156 |
+
version=SOURCE_VERSION,
|
157 |
+
description="Chia without scope source schema (with fixed entity offsets)",
|
158 |
+
schema="source",
|
159 |
+
subset_id="chia_without_scope_fixed",
|
160 |
+
),
|
161 |
+
BigBioConfig(
|
162 |
+
name="chia_bigbio_kb",
|
163 |
+
version=BIGBIO_VERSION,
|
164 |
+
description="Chia BigBio schema",
|
165 |
+
schema="bigbio_kb",
|
166 |
+
subset_id="chia",
|
167 |
+
),
|
168 |
+
]
|
169 |
+
|
170 |
+
DEFAULT_CONFIG_NAME = "chia_source"
|
171 |
+
|
172 |
+
def _info(self):
|
173 |
+
if self.config.schema == "source":
|
174 |
+
features = datasets.Features(
|
175 |
+
{
|
176 |
+
"id": datasets.Value("string"),
|
177 |
+
"document_id": datasets.Value(
|
178 |
+
"string"
|
179 |
+
), # NCT-ID from clinicialtrials.gov
|
180 |
+
"text": datasets.Value("string"),
|
181 |
+
"text_type": datasets.Value(
|
182 |
+
"string"
|
183 |
+
), # inclusion or exclusion (criteria)
|
184 |
+
"entities": [
|
185 |
+
{
|
186 |
+
"id": datasets.Value("string"),
|
187 |
+
"type": datasets.Value("string"),
|
188 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
189 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
190 |
+
"normalized": [
|
191 |
+
{
|
192 |
+
"db_name": datasets.Value("string"),
|
193 |
+
"db_id": datasets.Value("string"),
|
194 |
+
}
|
195 |
+
],
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"relations": [
|
199 |
+
{
|
200 |
+
"id": datasets.Value("string"),
|
201 |
+
"type": datasets.Value("string"),
|
202 |
+
"arg1_id": datasets.Value("string"),
|
203 |
+
"arg2_id": datasets.Value("string"),
|
204 |
+
"normalized": [
|
205 |
+
{
|
206 |
+
"db_name": datasets.Value("string"),
|
207 |
+
"db_id": datasets.Value("string"),
|
208 |
+
}
|
209 |
+
],
|
210 |
+
}
|
211 |
+
],
|
212 |
+
}
|
213 |
+
)
|
214 |
+
|
215 |
+
elif self.config.schema == "bigbio_kb":
|
216 |
+
features = kb_features
|
217 |
+
|
218 |
+
return datasets.DatasetInfo(
|
219 |
+
description=_DESCRIPTION,
|
220 |
+
features=features,
|
221 |
+
homepage=_HOMEPAGE,
|
222 |
+
license=str(_LICENSE),
|
223 |
+
citation=_CITATION,
|
224 |
+
)
|
225 |
+
|
226 |
+
def _split_generators(self, dl_manager):
|
227 |
+
url_key = _DATASETNAME
|
228 |
+
|
229 |
+
if self.config.subset_id.startswith("chia_without_scope"):
|
230 |
+
url_key += "_wo_scope"
|
231 |
+
|
232 |
+
urls = _URLS[url_key]
|
233 |
+
data_dir = Path(dl_manager.download_and_extract(urls))
|
234 |
+
|
235 |
+
return [
|
236 |
+
datasets.SplitGenerator(
|
237 |
+
name=datasets.Split.TRAIN,
|
238 |
+
gen_kwargs={"data_dir": data_dir},
|
239 |
+
)
|
240 |
+
]
|
241 |
+
|
242 |
+
def _generate_examples(self, data_dir: Path) -> Iterator[Tuple[str, Dict]]:
|
243 |
+
if self.config.schema == "source":
|
244 |
+
fix_offsets = "fixed" in self.config.subset_id
|
245 |
+
|
246 |
+
for file in data_dir.iterdir():
|
247 |
+
if not file.name.endswith(".txt"):
|
248 |
+
continue
|
249 |
+
|
250 |
+
brat_example = parse_brat_file(file, [".ann"])
|
251 |
+
source_example = self._to_source_example(
|
252 |
+
file, brat_example, fix_offsets
|
253 |
+
)
|
254 |
+
yield source_example["id"], source_example
|
255 |
+
|
256 |
+
elif self.config.schema == "bigbio_kb":
|
257 |
+
for file in data_dir.iterdir():
|
258 |
+
if not file.name.endswith(".txt"):
|
259 |
+
continue
|
260 |
+
|
261 |
+
brat_example = parse_brat_file(file, [".ann"])
|
262 |
+
source_example = self._to_source_example(file, brat_example, True)
|
263 |
+
|
264 |
+
bigbio_example = {
|
265 |
+
"id": source_example["id"],
|
266 |
+
"document_id": source_example["document_id"],
|
267 |
+
"passages": [
|
268 |
+
{
|
269 |
+
"id": source_example["id"] + "_text",
|
270 |
+
"type": source_example["text_type"],
|
271 |
+
"text": [source_example["text"]],
|
272 |
+
"offsets": [[0, len(source_example["text"])]],
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"entities": source_example["entities"],
|
276 |
+
"relations": source_example["relations"],
|
277 |
+
"events": [],
|
278 |
+
"coreferences": [],
|
279 |
+
}
|
280 |
+
|
281 |
+
yield bigbio_example["id"], bigbio_example
|
282 |
+
|
283 |
+
def _to_source_example(
|
284 |
+
self, input_file: Path, brat_example: Dict, fix_offsets: bool
|
285 |
+
) -> Dict:
|
286 |
+
"""
|
287 |
+
Converts the generic brat example to the source schema format.
|
288 |
+
"""
|
289 |
+
example_id = str(input_file.stem)
|
290 |
+
document_id = example_id.split("_")[0]
|
291 |
+
criteria_type = "inclusion" if "_inc" in input_file.stem else "exclusion"
|
292 |
+
|
293 |
+
text = brat_example["text"]
|
294 |
+
|
295 |
+
source_example = {
|
296 |
+
"id": example_id,
|
297 |
+
"document_id": document_id,
|
298 |
+
"text_type": criteria_type,
|
299 |
+
"text": text,
|
300 |
+
"entities": [],
|
301 |
+
"relations": [],
|
302 |
+
}
|
303 |
+
|
304 |
+
example_prefix = example_id + "_"
|
305 |
+
entity_ids = {}
|
306 |
+
|
307 |
+
for tb_annotation in brat_example["text_bound_annotations"]:
|
308 |
+
if tb_annotation["type"].capitalize() not in _ALL_ENTITY_TYPES:
|
309 |
+
continue
|
310 |
+
|
311 |
+
entity_ann = tb_annotation.copy()
|
312 |
+
entity_ann["id"] = example_prefix + entity_ann["id"]
|
313 |
+
entity_ids[entity_ann["id"]] = True
|
314 |
+
|
315 |
+
if fix_offsets:
|
316 |
+
if len(entity_ann["offsets"]) > 1:
|
317 |
+
entity_ann["text"] = self._get_texts_for_multiple_offsets(
|
318 |
+
text, entity_ann["offsets"]
|
319 |
+
)
|
320 |
+
|
321 |
+
fixed_offsets = []
|
322 |
+
fixed_texts = []
|
323 |
+
for entity_text, offsets in zip(
|
324 |
+
entity_ann["text"], entity_ann["offsets"]
|
325 |
+
):
|
326 |
+
fixed_offset = self._fix_entity_offsets(text, entity_text, offsets)
|
327 |
+
fixed_offsets.append(fixed_offset)
|
328 |
+
fixed_texts.append(text[fixed_offset[0] : fixed_offset[1]])
|
329 |
+
|
330 |
+
entity_ann["offsets"] = fixed_offsets
|
331 |
+
entity_ann["text"] = fixed_texts
|
332 |
+
|
333 |
+
entity_ann["normalized"] = []
|
334 |
+
source_example["entities"].append(entity_ann)
|
335 |
+
|
336 |
+
for base_rel_annotation in brat_example["relations"]:
|
337 |
+
if base_rel_annotation["type"].upper() not in _RELATION_TYPES:
|
338 |
+
continue
|
339 |
+
|
340 |
+
head_id = example_prefix + base_rel_annotation["head"]["ref_id"]
|
341 |
+
tail_id = example_prefix + base_rel_annotation["tail"]["ref_id"]
|
342 |
+
|
343 |
+
if head_id not in entity_ids or tail_id not in entity_ids:
|
344 |
+
continue
|
345 |
+
|
346 |
+
relation = {
|
347 |
+
"id": example_prefix + base_rel_annotation["id"],
|
348 |
+
"type": base_rel_annotation["type"],
|
349 |
+
"arg1_id": head_id,
|
350 |
+
"arg2_id": tail_id,
|
351 |
+
"normalized": [],
|
352 |
+
}
|
353 |
+
|
354 |
+
source_example["relations"].append(relation)
|
355 |
+
|
356 |
+
relation_id = len(brat_example["relations"]) + 10
|
357 |
+
for base_co_reference in brat_example["equivalences"]:
|
358 |
+
ref_ids = base_co_reference["ref_ids"]
|
359 |
+
for i, arg1 in enumerate(ref_ids[:-1]):
|
360 |
+
for arg2 in ref_ids[i + 1 :]:
|
361 |
+
if arg1 not in entity_ids or arg2 not in entity_ids:
|
362 |
+
continue
|
363 |
+
|
364 |
+
or_relation = {
|
365 |
+
"id": example_prefix + f"R{relation_id}",
|
366 |
+
"type": "OR",
|
367 |
+
"arg1_id": example_prefix + arg1,
|
368 |
+
"arg2_id": example_prefix + arg2,
|
369 |
+
"normalized": [],
|
370 |
+
}
|
371 |
+
|
372 |
+
source_example["relations"].append(or_relation)
|
373 |
+
relation_id += 1
|
374 |
+
|
375 |
+
return source_example
|
376 |
+
|
377 |
+
def _fix_entity_offsets(
|
378 |
+
self, doc_text: str, entity_text: str, given_offsets: List[int]
|
379 |
+
) -> List[int]:
|
380 |
+
"""
|
381 |
+
Fixes incorrect mention offsets by checking whether the given entity mention text can be
|
382 |
+
found to the left or right of the given offsets by considering incrementally larger shifts.
|
383 |
+
"""
|
384 |
+
left = given_offsets[0]
|
385 |
+
right = given_offsets[1]
|
386 |
+
|
387 |
+
# Some annotations contain whitespaces - we ignore them
|
388 |
+
clean_entity_text = entity_text.strip()
|
389 |
+
|
390 |
+
i = 0
|
391 |
+
while i <= _MAX_OFFSET_CORRECTION:
|
392 |
+
# Move mention window to the left
|
393 |
+
if doc_text[left - i : right - i].strip() == clean_entity_text:
|
394 |
+
return [left - i, left - i + len(clean_entity_text)]
|
395 |
+
|
396 |
+
# Move mention window to the right
|
397 |
+
elif doc_text[left + i : right + i].strip() == clean_entity_text:
|
398 |
+
return [left + i, left + i + len(clean_entity_text)]
|
399 |
+
|
400 |
+
i += 1
|
401 |
+
|
402 |
+
# We can't find any better offsets
|
403 |
+
return given_offsets
|
404 |
+
|
405 |
+
def _get_texts_for_multiple_offsets(
|
406 |
+
self, document_text: str, offsets: List[List[int]]
|
407 |
+
) -> List[str]:
|
408 |
+
"""
|
409 |
+
Extracts the single text span for a given list of offsets.
|
410 |
+
"""
|
411 |
+
texts = []
|
412 |
+
for offset in offsets:
|
413 |
+
texts.append(document_text[offset[0] : offset[1]])
|
414 |
+
return texts
|
415 |
+
|
416 |
+
|
417 |
+
def parse_brat_file(txt_file: Path, annotation_file_suffixes: List[str] = None) -> Dict:
|
418 |
+
"""
|
419 |
+
Parse a brat file into the schema defined below.
|
420 |
+
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
421 |
+
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
422 |
+
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
423 |
+
|
424 |
+
Schema of the parse:
|
425 |
+
features = datasets.Features(
|
426 |
+
{
|
427 |
+
"id": datasets.Value("string"),
|
428 |
+
"document_id": datasets.Value("string"),
|
429 |
+
"text": datasets.Value("string"),
|
430 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
431 |
+
{
|
432 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
433 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
434 |
+
"type": datasets.Value("string"),
|
435 |
+
"id": datasets.Value("string"),
|
436 |
+
}
|
437 |
+
],
|
438 |
+
"events": [ # E line in brat
|
439 |
+
{
|
440 |
+
"trigger": datasets.Value(
|
441 |
+
"string"
|
442 |
+
), # refers to the text_bound_annotation of the trigger,
|
443 |
+
"id": datasets.Value("string"),
|
444 |
+
"type": datasets.Value("string"),
|
445 |
+
"arguments": datasets.Sequence(
|
446 |
+
{
|
447 |
+
"role": datasets.Value("string"),
|
448 |
+
"ref_id": datasets.Value("string"),
|
449 |
+
}
|
450 |
+
),
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"relations": [ # R line in brat
|
454 |
+
{
|
455 |
+
"id": datasets.Value("string"),
|
456 |
+
"head": {
|
457 |
+
"ref_id": datasets.Value("string"),
|
458 |
+
"role": datasets.Value("string"),
|
459 |
+
},
|
460 |
+
"tail": {
|
461 |
+
"ref_id": datasets.Value("string"),
|
462 |
+
"role": datasets.Value("string"),
|
463 |
+
},
|
464 |
+
"type": datasets.Value("string"),
|
465 |
+
}
|
466 |
+
],
|
467 |
+
"equivalences": [ # Equiv line in brat
|
468 |
+
{
|
469 |
+
"id": datasets.Value("string"),
|
470 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
471 |
+
}
|
472 |
+
],
|
473 |
+
"attributes": [ # M or A lines in brat
|
474 |
+
{
|
475 |
+
"id": datasets.Value("string"),
|
476 |
+
"type": datasets.Value("string"),
|
477 |
+
"ref_id": datasets.Value("string"),
|
478 |
+
"value": datasets.Value("string"),
|
479 |
+
}
|
480 |
+
],
|
481 |
+
"normalizations": [ # N lines in brat
|
482 |
+
{
|
483 |
+
"id": datasets.Value("string"),
|
484 |
+
"type": datasets.Value("string"),
|
485 |
+
"ref_id": datasets.Value("string"),
|
486 |
+
"resource_name": datasets.Value(
|
487 |
+
"string"
|
488 |
+
), # Name of the resource, e.g. "Wikipedia"
|
489 |
+
"cuid": datasets.Value(
|
490 |
+
"string"
|
491 |
+
), # ID in the resource, e.g. 534366
|
492 |
+
"text": datasets.Value(
|
493 |
+
"string"
|
494 |
+
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
495 |
+
}
|
496 |
+
],
|
497 |
+
},
|
498 |
+
)
|
499 |
+
"""
|
500 |
+
|
501 |
+
example = {}
|
502 |
+
example["document_id"] = txt_file.with_suffix("").name
|
503 |
+
with txt_file.open() as f:
|
504 |
+
example["text"] = f.read()
|
505 |
+
|
506 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
507 |
+
# for event extraction
|
508 |
+
if annotation_file_suffixes is None:
|
509 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
510 |
+
|
511 |
+
if len(annotation_file_suffixes) == 0:
|
512 |
+
raise AssertionError(
|
513 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
514 |
+
)
|
515 |
+
|
516 |
+
ann_lines = []
|
517 |
+
for suffix in annotation_file_suffixes:
|
518 |
+
annotation_file = txt_file.with_suffix(suffix)
|
519 |
+
if annotation_file.exists():
|
520 |
+
with annotation_file.open() as f:
|
521 |
+
ann_lines.extend(f.readlines())
|
522 |
+
|
523 |
+
example["text_bound_annotations"] = []
|
524 |
+
example["events"] = []
|
525 |
+
example["relations"] = []
|
526 |
+
example["equivalences"] = []
|
527 |
+
example["attributes"] = []
|
528 |
+
example["normalizations"] = []
|
529 |
+
|
530 |
+
prev_tb_annotation = None
|
531 |
+
|
532 |
+
for line in ann_lines:
|
533 |
+
orig_line = line
|
534 |
+
line = line.strip()
|
535 |
+
if not line:
|
536 |
+
continue
|
537 |
+
|
538 |
+
# If an (entity) annotation spans multiple lines, this will result in multiple
|
539 |
+
# lines also in the annotation file
|
540 |
+
if "\t" not in line and prev_tb_annotation is not None:
|
541 |
+
prev_tb_annotation["text"][0] += "\n" + orig_line[:-1]
|
542 |
+
continue
|
543 |
+
|
544 |
+
if line.startswith("T"): # Text bound
|
545 |
+
ann = {}
|
546 |
+
fields = line.split("\t")
|
547 |
+
|
548 |
+
ann["id"] = fields[0]
|
549 |
+
ann["text"] = [fields[2]]
|
550 |
+
ann["type"] = fields[1].split()[0]
|
551 |
+
ann["offsets"] = []
|
552 |
+
span_str = parsing.remove_prefix(fields[1], (ann["type"] + " "))
|
553 |
+
for span in span_str.split(";"):
|
554 |
+
start, end = span.split()
|
555 |
+
ann["offsets"].append([int(start), int(end)])
|
556 |
+
|
557 |
+
example["text_bound_annotations"].append(ann)
|
558 |
+
prev_tb_annotation = ann
|
559 |
+
|
560 |
+
elif line.startswith("E"):
|
561 |
+
ann = {}
|
562 |
+
fields = line.split("\t")
|
563 |
+
|
564 |
+
ann["id"] = fields[0]
|
565 |
+
|
566 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
567 |
+
|
568 |
+
ann["arguments"] = []
|
569 |
+
for role_ref_id in fields[1].split()[1:]:
|
570 |
+
argument = {
|
571 |
+
"role": (role_ref_id.split(":"))[0],
|
572 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
573 |
+
}
|
574 |
+
ann["arguments"].append(argument)
|
575 |
+
|
576 |
+
example["events"].append(ann)
|
577 |
+
prev_tb_annotation = None
|
578 |
+
|
579 |
+
elif line.startswith("R"):
|
580 |
+
ann = {}
|
581 |
+
fields = line.split("\t")
|
582 |
+
|
583 |
+
ann["id"] = fields[0]
|
584 |
+
ann["type"] = fields[1].split()[0]
|
585 |
+
|
586 |
+
ann["head"] = {
|
587 |
+
"role": fields[1].split()[1].split(":")[0],
|
588 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
589 |
+
}
|
590 |
+
ann["tail"] = {
|
591 |
+
"role": fields[1].split()[2].split(":")[0],
|
592 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
593 |
+
}
|
594 |
+
|
595 |
+
example["relations"].append(ann)
|
596 |
+
prev_tb_annotation = None
|
597 |
+
|
598 |
+
# '*' seems to be the legacy way to mark equivalences,
|
599 |
+
# but I couldn't find any info on the current way
|
600 |
+
# this might have to be adapted dependent on the brat version
|
601 |
+
# of the annotation
|
602 |
+
elif line.startswith("*"):
|
603 |
+
ann = {}
|
604 |
+
fields = line.split("\t")
|
605 |
+
|
606 |
+
ann["id"] = fields[0]
|
607 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
608 |
+
|
609 |
+
example["equivalences"].append(ann)
|
610 |
+
prev_tb_annotation = None
|
611 |
+
|
612 |
+
elif line.startswith("A") or line.startswith("M"):
|
613 |
+
ann = {}
|
614 |
+
fields = line.split("\t")
|
615 |
+
|
616 |
+
ann["id"] = fields[0]
|
617 |
+
|
618 |
+
info = fields[1].split()
|
619 |
+
ann["type"] = info[0]
|
620 |
+
ann["ref_id"] = info[1]
|
621 |
+
|
622 |
+
if len(info) > 2:
|
623 |
+
ann["value"] = info[2]
|
624 |
+
else:
|
625 |
+
ann["value"] = ""
|
626 |
+
|
627 |
+
example["attributes"].append(ann)
|
628 |
+
prev_tb_annotation = None
|
629 |
+
|
630 |
+
elif line.startswith("N"):
|
631 |
+
ann = {}
|
632 |
+
fields = line.split("\t")
|
633 |
+
|
634 |
+
ann["id"] = fields[0]
|
635 |
+
ann["text"] = fields[2]
|
636 |
+
|
637 |
+
info = fields[1].split()
|
638 |
+
|
639 |
+
ann["type"] = info[0]
|
640 |
+
ann["ref_id"] = info[1]
|
641 |
+
ann["resource_name"] = info[2].split(":")[0]
|
642 |
+
ann["cuid"] = info[2].split(":")[1]
|
643 |
+
|
644 |
+
example["normalizations"].append(ann)
|
645 |
+
prev_tb_annotation = None
|
646 |
+
|
647 |
+
return example
|