File size: 8,672 Bytes
373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b cf67932 373d79b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['Spanish']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@article{miranda2022overview,
title={Overview of DisTEMIST at BioASQ: Automatic detection and normalization of diseases
from clinical texts: results, methods, evaluation and multilingual resources},
author={Miranda-Escalada, Antonio and Gascó, Luis and Lima-López, Salvador and Farré-Maduell,
Eulàlia and Estrada, Darryl and Nentidis, Anastasios and Krithara, Anastasia and Katsimpras,
Georgios and Paliouras, Georgios and Krallinger, Martin},
booktitle={Working Notes of Conference and Labs of the Evaluation (CLEF) Forum.
CEUR Workshop Proceedings},
year={2022}
}
"""
_DATASETNAME = "distemist"
_DISPLAYNAME = "DisTEMIST"
_DESCRIPTION = """\
The DisTEMIST corpus is a collection of 1000 clinical cases with disease annotations linked with Snomed-CT concepts.
All documents are released in the context of the BioASQ DisTEMIST track for CLEF 2022.
"""
_HOMEPAGE = "https://zenodo.org/record/6671292"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_URLS = {
_DATASETNAME: "https://zenodo.org/record/6671292/files/distemist.zip?download=1",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "5.1.0"
_BIGBIO_VERSION = "1.0.0"
class DistemistDataset(datasets.GeneratorBasedBuilder):
"""
The DisTEMIST corpus is a collection of 1000 clinical cases with disease annotations linked with Snomed-CT
concepts.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="distemist_entities_source",
version=SOURCE_VERSION,
description="DisTEMIST (subtrack 1: entities) source schema",
schema="source",
subset_id="distemist_entities",
),
BigBioConfig(
name="distemist_linking_source",
version=SOURCE_VERSION,
description="DisTEMIST (subtrack 2: linking) source schema",
schema="source",
subset_id="distemist_linking",
),
BigBioConfig(
name="distemist_entities_bigbio_kb",
version=BIGBIO_VERSION,
description="DisTEMIST (subtrack 1: entities) BigBio schema",
schema="bigbio_kb",
subset_id="distemist_entities",
),
BigBioConfig(
name="distemist_linking_bigbio_kb",
version=BIGBIO_VERSION,
description="DisTEMIST (subtrack 2: linking) BigBio schema",
schema="bigbio_kb",
subset_id="distemist_linking",
),
]
DEFAULT_CONFIG_NAME = "distemist_entities_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"passages": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"concept_codes": datasets.Sequence(datasets.Value("string")),
"semantic_relations": datasets.Sequence(datasets.Value("string")),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
base_bath = Path(data_dir) / "distemist" / "training"
if self.config.subset_id == "distemist_entities":
entity_mapping_files = [base_bath / "subtrack1_entities" / "distemist_subtrack1_training_mentions.tsv"]
else:
entity_mapping_files = [
base_bath / "subtrack2_linking" / "distemist_subtrack2_training1_linking.tsv",
base_bath / "subtrack2_linking" / "distemist_subtrack2_training2_linking.tsv",
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"entity_mapping_files": entity_mapping_files,
"text_files_dir": base_bath / "text_files",
},
),
]
def _generate_examples(
self,
entity_mapping_files: List[Path],
text_files_dir: Path,
) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
entities_mapping = pd.concat([pd.read_csv(file, sep="\t") for file in entity_mapping_files])
entity_file_names = entities_mapping["filename"].unique()
for uid, filename in enumerate(entity_file_names):
text_file = text_files_dir / f"{filename}.txt"
doc_text = text_file.read_text()
# doc_text = doc_text.replace("\n", "")
entities_df: pd.DataFrame = entities_mapping[entities_mapping["filename"] == filename]
example = {
"id": f"{uid}",
"document_id": filename,
"passages": [
{
"id": f"{uid}_{filename}_passage",
"type": "clinical_case",
"text": [doc_text],
"offsets": [[0, len(doc_text)]],
}
],
}
if self.config.schema == "bigbio_kb":
example["events"] = []
example["coreferences"] = []
example["relations"] = []
entities = []
for row in entities_df.itertuples(name="Entity"):
entity = {
"id": f"{uid}_{row.filename}_{row.Index}_entity_id_{row.mark}",
"type": row.label,
"text": [row.span],
"offsets": [[row.off0, row.off1]],
}
if self.config.schema == "source":
entity["concept_codes"] = []
entity["semantic_relations"] = []
if self.config.subset_id == "distemist_linking":
entity["concept_codes"] = row.code.split("+")
entity["semantic_relations"] = row.semantic_rel.split("+")
elif self.config.schema == "bigbio_kb":
if self.config.subset_id == "distemist_linking":
entity["normalized"] = [
{"db_id": code, "db_name": "SNOMED_CT"} for code in row.code.split("+")
]
else:
entity["normalized"] = []
entities.append(entity)
example["entities"] = entities
yield uid, example
|