Datasets:

Languages:
Spanish
License:
gabrielaltay commited on
Commit
0098e9d
·
1 Parent(s): 1198b72

https://github.com/bigscience-workshop/biomedical/pull/736/files (#1)

Browse files

- https://github.com/bigscience-workshop/biomedical/pull/736/files (cf67932212127f2c698f18d7deb27afee16814e9)

Files changed (1) hide show
  1. distemist.py +58 -51
distemist.py CHANGED
@@ -23,20 +23,19 @@ from .bigbiohub import kb_features
23
  from .bigbiohub import BigBioConfig
24
  from .bigbiohub import Tasks
25
 
26
- _LANGUAGES = ['English']
27
  _PUBMED = False
28
  _LOCAL = False
29
  _CITATION = """\
30
- @dataset{luis_gasco_2022_6458455,
31
- author = {Luis Gasco and Eulàlia Farré and Miranda-Escalada, Antonio and Salvador Lima and Martin Krallinger},
32
- title = {{DisTEMIST corpus: detection and normalization of disease mentions in spanish clinical cases}},
33
- month = apr,
34
- year = 2022,
35
- note = {{Funded by the Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).}},
36
- publisher = {Zenodo},
37
- version = {2.0.0},
38
- doi = {10.5281/zenodo.6458455},
39
- url = {https://doi.org/10.5281/zenodo.6458455}
40
  }
41
  """
42
 
@@ -48,17 +47,17 @@ The DisTEMIST corpus is a collection of 1000 clinical cases with disease annotat
48
  All documents are released in the context of the BioASQ DisTEMIST track for CLEF 2022.
49
  """
50
 
51
- _HOMEPAGE = "https://zenodo.org/record/6458455"
52
 
53
  _LICENSE = 'Creative Commons Attribution 4.0 International'
54
 
55
  _URLS = {
56
- _DATASETNAME: "https://zenodo.org/record/6458455/files/distemist.zip?download=1",
57
  }
58
 
59
- _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
60
 
61
- _SOURCE_VERSION = "2.0.0"
62
  _BIGBIO_VERSION = "1.0.0"
63
 
64
 
@@ -73,22 +72,36 @@ class DistemistDataset(datasets.GeneratorBasedBuilder):
73
 
74
  BUILDER_CONFIGS = [
75
  BigBioConfig(
76
- name="distemist_source",
77
  version=SOURCE_VERSION,
78
- description="DisTEMIST source schema",
79
  schema="source",
80
- subset_id="distemist",
81
  ),
82
  BigBioConfig(
83
- name="distemist_bigbio_kb",
 
 
 
 
 
 
 
84
  version=BIGBIO_VERSION,
85
- description="DisTEMIST BigBio schema",
86
  schema="bigbio_kb",
87
- subset_id="distemist",
 
 
 
 
 
 
 
88
  ),
89
  ]
90
 
91
- DEFAULT_CONFIG_NAME = "distemist_source"
92
 
93
  def _info(self) -> datasets.DatasetInfo:
94
 
@@ -111,12 +124,8 @@ class DistemistDataset(datasets.GeneratorBasedBuilder):
111
  "type": datasets.Value("string"),
112
  "text": datasets.Sequence(datasets.Value("string")),
113
  "offsets": datasets.Sequence([datasets.Value("int32")]),
114
- "concept_codes": datasets.Sequence(
115
- datasets.Value("string")
116
- ),
117
- "semantic_relations": datasets.Sequence(
118
- datasets.Value("string")
119
- ),
120
  }
121
  ],
122
  }
@@ -136,33 +145,33 @@ class DistemistDataset(datasets.GeneratorBasedBuilder):
136
  """Returns SplitGenerators."""
137
  urls = _URLS[_DATASETNAME]
138
  data_dir = dl_manager.download_and_extract(urls)
 
 
 
 
 
 
 
 
139
  return [
140
  datasets.SplitGenerator(
141
  name=datasets.Split.TRAIN,
142
  gen_kwargs={
143
- "entities_mapping_file_path": Path(data_dir)
144
- / "training/subtrack1_entities/distemist_subtrack1_training_mentions.tsv",
145
- "linking_mapping_file_path": Path(data_dir)
146
- / "training/subtrack2_linking/distemist_subtrack1_training1_linking.tsv",
147
- "text_files_dir": Path(data_dir) / "training/text_files",
148
  },
149
  ),
150
  ]
151
 
152
  def _generate_examples(
153
  self,
154
- entities_mapping_file_path: Path,
155
- linking_mapping_file_path: Path,
156
  text_files_dir: Path,
157
  ) -> Tuple[int, Dict]:
158
  """Yields examples as (key, example) tuples."""
159
- entities_mapping = pd.read_csv(entities_mapping_file_path, sep="\t")
160
- linking_mapping = pd.read_csv(linking_mapping_file_path, sep="\t")
161
-
162
- entity_file_names = set(entities_mapping["filename"])
163
- linking_file_names = set(linking_mapping["filename"])
164
 
165
- # entity_file_names = entity_file_names.difference(linking_file_names)
 
166
 
167
  for uid, filename in enumerate(entity_file_names):
168
  text_file = text_files_dir / f"{filename}.txt"
@@ -170,14 +179,7 @@ class DistemistDataset(datasets.GeneratorBasedBuilder):
170
  doc_text = text_file.read_text()
171
  # doc_text = doc_text.replace("\n", "")
172
 
173
- if filename in linking_file_names:
174
- entities_df: pd.DataFrame = linking_mapping[
175
- linking_mapping["filename"] == filename
176
- ]
177
- else:
178
- entities_df: pd.DataFrame = entities_mapping[
179
- entities_mapping["filename"] == filename
180
- ]
181
 
182
  example = {
183
  "id": f"{uid}",
@@ -207,12 +209,17 @@ class DistemistDataset(datasets.GeneratorBasedBuilder):
207
  if self.config.schema == "source":
208
  entity["concept_codes"] = []
209
  entity["semantic_relations"] = []
210
- if filename in linking_file_names:
211
  entity["concept_codes"] = row.code.split("+")
212
  entity["semantic_relations"] = row.semantic_rel.split("+")
213
 
214
  elif self.config.schema == "bigbio_kb":
215
- entity["normalized"] = []
 
 
 
 
 
216
 
217
  entities.append(entity)
218
 
 
23
  from .bigbiohub import BigBioConfig
24
  from .bigbiohub import Tasks
25
 
26
+ _LANGUAGES = ['Spanish']
27
  _PUBMED = False
28
  _LOCAL = False
29
  _CITATION = """\
30
+ @article{miranda2022overview,
31
+ title={Overview of DisTEMIST at BioASQ: Automatic detection and normalization of diseases
32
+ from clinical texts: results, methods, evaluation and multilingual resources},
33
+ author={Miranda-Escalada, Antonio and Gascó, Luis and Lima-López, Salvador and Farré-Maduell,
34
+ Eulàlia and Estrada, Darryl and Nentidis, Anastasios and Krithara, Anastasia and Katsimpras,
35
+ Georgios and Paliouras, Georgios and Krallinger, Martin},
36
+ booktitle={Working Notes of Conference and Labs of the Evaluation (CLEF) Forum.
37
+ CEUR Workshop Proceedings},
38
+ year={2022}
 
39
  }
40
  """
41
 
 
47
  All documents are released in the context of the BioASQ DisTEMIST track for CLEF 2022.
48
  """
49
 
50
+ _HOMEPAGE = "https://zenodo.org/record/6671292"
51
 
52
  _LICENSE = 'Creative Commons Attribution 4.0 International'
53
 
54
  _URLS = {
55
+ _DATASETNAME: "https://zenodo.org/record/6671292/files/distemist.zip?download=1",
56
  }
57
 
58
+ _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
59
 
60
+ _SOURCE_VERSION = "5.1.0"
61
  _BIGBIO_VERSION = "1.0.0"
62
 
63
 
 
72
 
73
  BUILDER_CONFIGS = [
74
  BigBioConfig(
75
+ name="distemist_entities_source",
76
  version=SOURCE_VERSION,
77
+ description="DisTEMIST (subtrack 1: entities) source schema",
78
  schema="source",
79
+ subset_id="distemist_entities",
80
  ),
81
  BigBioConfig(
82
+ name="distemist_linking_source",
83
+ version=SOURCE_VERSION,
84
+ description="DisTEMIST (subtrack 2: linking) source schema",
85
+ schema="source",
86
+ subset_id="distemist_linking",
87
+ ),
88
+ BigBioConfig(
89
+ name="distemist_entities_bigbio_kb",
90
  version=BIGBIO_VERSION,
91
+ description="DisTEMIST (subtrack 1: entities) BigBio schema",
92
  schema="bigbio_kb",
93
+ subset_id="distemist_entities",
94
+ ),
95
+ BigBioConfig(
96
+ name="distemist_linking_bigbio_kb",
97
+ version=BIGBIO_VERSION,
98
+ description="DisTEMIST (subtrack 2: linking) BigBio schema",
99
+ schema="bigbio_kb",
100
+ subset_id="distemist_linking",
101
  ),
102
  ]
103
 
104
+ DEFAULT_CONFIG_NAME = "distemist_entities_source"
105
 
106
  def _info(self) -> datasets.DatasetInfo:
107
 
 
124
  "type": datasets.Value("string"),
125
  "text": datasets.Sequence(datasets.Value("string")),
126
  "offsets": datasets.Sequence([datasets.Value("int32")]),
127
+ "concept_codes": datasets.Sequence(datasets.Value("string")),
128
+ "semantic_relations": datasets.Sequence(datasets.Value("string")),
 
 
 
 
129
  }
130
  ],
131
  }
 
145
  """Returns SplitGenerators."""
146
  urls = _URLS[_DATASETNAME]
147
  data_dir = dl_manager.download_and_extract(urls)
148
+ base_bath = Path(data_dir) / "distemist" / "training"
149
+ if self.config.subset_id == "distemist_entities":
150
+ entity_mapping_files = [base_bath / "subtrack1_entities" / "distemist_subtrack1_training_mentions.tsv"]
151
+ else:
152
+ entity_mapping_files = [
153
+ base_bath / "subtrack2_linking" / "distemist_subtrack2_training1_linking.tsv",
154
+ base_bath / "subtrack2_linking" / "distemist_subtrack2_training2_linking.tsv",
155
+ ]
156
  return [
157
  datasets.SplitGenerator(
158
  name=datasets.Split.TRAIN,
159
  gen_kwargs={
160
+ "entity_mapping_files": entity_mapping_files,
161
+ "text_files_dir": base_bath / "text_files",
 
 
 
162
  },
163
  ),
164
  ]
165
 
166
  def _generate_examples(
167
  self,
168
+ entity_mapping_files: List[Path],
 
169
  text_files_dir: Path,
170
  ) -> Tuple[int, Dict]:
171
  """Yields examples as (key, example) tuples."""
 
 
 
 
 
172
 
173
+ entities_mapping = pd.concat([pd.read_csv(file, sep="\t") for file in entity_mapping_files])
174
+ entity_file_names = entities_mapping["filename"].unique()
175
 
176
  for uid, filename in enumerate(entity_file_names):
177
  text_file = text_files_dir / f"{filename}.txt"
 
179
  doc_text = text_file.read_text()
180
  # doc_text = doc_text.replace("\n", "")
181
 
182
+ entities_df: pd.DataFrame = entities_mapping[entities_mapping["filename"] == filename]
 
 
 
 
 
 
 
183
 
184
  example = {
185
  "id": f"{uid}",
 
209
  if self.config.schema == "source":
210
  entity["concept_codes"] = []
211
  entity["semantic_relations"] = []
212
+ if self.config.subset_id == "distemist_linking":
213
  entity["concept_codes"] = row.code.split("+")
214
  entity["semantic_relations"] = row.semantic_rel.split("+")
215
 
216
  elif self.config.schema == "bigbio_kb":
217
+ if self.config.subset_id == "distemist_linking":
218
+ entity["normalized"] = [
219
+ {"db_id": code, "db_name": "SNOMED_CT"} for code in row.code.split("+")
220
+ ]
221
+ else:
222
+ entity["normalized"] = []
223
 
224
  entities.append(entity)
225