Datasets:

Modalities:
Tabular
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,746 Bytes
a5b3217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
The dataset consists of biomedical articles describing randomized control trials (RCTs)
that compare multiple treatments. Each of these articles will have multiple questions,
or 'prompts' associated with them. These prompts will ask about the relationship between
an intervention and comparator with respect to an outcome, as reported in the trial.
For example, a prompt may ask about the reported effects of aspirin as compared to placebo
on the duration of headaches.
For the sake of this task, we assume that a particular article will report that the intervention of interest either
significantly increased, significantly decreased or had significant effect on the outcome, relative to the comparator.
"""

import os
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from .bigbiohub import qa_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{deyoung-etal-2020-evidence,
    title = "Evidence Inference 2.0: More Data, Better Models",
    author = "DeYoung, Jay  and
      Lehman, Eric  and
      Nye, Benjamin  and
      Marshall, Iain  and
      Wallace, Byron C.",
    booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.bionlp-1.13",
    pages = "123--132",
}
"""

_DATASETNAME = "evidence_inference"
_DISPLAYNAME = "Evidence Inference 2.0"

_DESCRIPTION = """\
The dataset consists of biomedical articles describing randomized control trials (RCTs) that compare multiple
treatments. Each of these articles will have multiple questions, or 'prompts' associated with them.
These prompts will ask about the relationship between an intervention and comparator with respect to an outcome,
as reported in the trial. For example, a prompt may ask about the reported effects of aspirin as compared
to placebo on the duration of headaches. For the sake of this task, we assume that a particular article
will report that the intervention of interest either significantly increased, significantly decreased
or had significant effect on the outcome, relative to the comparator.
"""

_HOMEPAGE = "https://github.com/jayded/evidence-inference"

_LICENSE = 'MIT License'

_URLS = {
    _DATASETNAME: "http://evidence-inference.ebm-nlp.com/v2.0.tar.gz",
}

_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]

_SOURCE_VERSION = "2.0.0"

_BIGBIO_VERSION = "1.0.0"

QA_CHOICES = [
    "significantly increased",
    "no significant difference",
    "significantly decreased",
]

# Some examples are removed due to comments on the dataset's github page
# https://github.com/jayded/evidence-inference/blob/master/annotations/README.md#caveat

INCORRECT_PROMPT_IDS = set([
    911, 912, 1262, 1261, 3044, 3248, 3111, 3620, 4308, 4490, 4491, 4324,
    4325, 4492, 4824, 5000, 5001, 5002, 5046, 5047, 4948, 5639, 5710, 5752,
    5775, 5782, 5841, 5843, 5861, 5862, 5863, 5964, 5965, 5966, 5975, 4807,
    5776, 5777, 5778, 5779, 5780, 5781, 6034, 6065, 6066, 6666, 6667, 6668,
    6669, 7040, 7042, 7944, 8590, 8605, 8606, 8639, 8640, 8745, 8747, 8749,
    8877, 8878, 8593, 8631, 8635, 8884, 8886, 8773, 10032, 10035, 8876, 8875,
    8885, 8917, 8921, 8118, 10885, 10886, 10887, 10888, 10889, 10890
])

QUESTIONABLE_PROMPT_IDS = set([
    7811, 7812, 7813, 7814, 7815, 8197, 8198, 8199,
    8200, 8201, 9429, 9430, 9431, 8536, 9432
])

SOMEWHAT_MALFORMED_PROMPT_IDS = set([
    3514, 346, 5037, 4715, 8767, 9295, 9297, 8870, 9862
])

SKIP_PROMPT_IDS = INCORRECT_PROMPT_IDS | QUESTIONABLE_PROMPT_IDS | SOMEWHAT_MALFORMED_PROMPT_IDS


class EvidenceInferenceDataset(datasets.GeneratorBasedBuilder):
    f"""{_DESCRIPTION}"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="evidence-inference_source",
            version=SOURCE_VERSION,
            description="evidence-inference source schema",
            schema="source",
            subset_id="evidence-inference",
        ),
        BigBioConfig(
            name="evidence-inference_bigbio_qa",
            version=BIGBIO_VERSION,
            description="evidence-inference BigBio schema",
            schema="bigbio_qa",
            subset_id="evidence-inference",
        ),
    ]

    DEFAULT_CONFIG_NAME = "evidence-inference_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "prompt_id": datasets.Value("int64"),
                    "pmcid": datasets.Value("int64"),
                    "label": datasets.Value("string"),
                    "evidence": datasets.Value("string"),
                    "intervention": datasets.Value("string"),
                    "comparator": datasets.Value("string"),
                    "outcome": datasets.Value("string"),
                }
            )

        elif self.config.schema == "bigbio_qa":
            features = qa_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": [
                        os.path.join(data_dir, "annotations_merged.csv"),
                        os.path.join(data_dir, "prompts_merged.csv"),
                    ],
                    "datapath": os.path.join(data_dir, "txt_files"),
                    "split": "train",
                    "datadir": data_dir,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepaths": [
                        os.path.join(data_dir, "annotations_merged.csv"),
                        os.path.join(data_dir, "prompts_merged.csv"),
                    ],
                    "datapath": os.path.join(data_dir, "txt_files"),
                    "split": "validation",
                    "datadir": data_dir,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepaths": [
                        os.path.join(data_dir, "annotations_merged.csv"),
                        os.path.join(data_dir, "prompts_merged.csv"),
                    ],
                    "datapath": os.path.join(data_dir, "txt_files"),
                    "split": "test",
                    "datadir": data_dir,
                },
            ),
        ]

    def _generate_examples(
        self, filepaths, datapath, split, datadir
    ) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        with open(f"{datadir}/splits/{split}_article_ids.txt", "r") as f:
            ids = [int(i.strip()) for i in f.readlines()]
        prompts = pd.read_csv(filepaths[-1], encoding="utf8")
        prompts = prompts[prompts["PMCID"].isin(ids)]

        annotations = pd.read_csv(filepaths[0], encoding="utf8").set_index("PromptID")
        evidences = pd.read_csv(filepaths[0], encoding="utf8").set_index("PMCID")
        evidences = evidences[evidences["Evidence Start"] != -1]
        uid = 0

        def lookup(df: pd.DataFrame, id, col) -> str:
            try:
                label = df.loc[id][col]
                if isinstance(label, pd.Series):
                    return label.values[0]
                else:
                    return label
            except KeyError:
                return -1

        def extract_evidence(doc_id, start, end):
            p = f"{datapath}/PMC{doc_id}.txt"
            with open(p, "r") as f:
                return f.read()[start:end]


        for key, sample in prompts.iterrows():

            pid = sample["PromptID"]
            pmcid = sample["PMCID"]
            label = lookup(annotations, pid, "Label")
            start = lookup(evidences, pmcid, "Evidence Start")
            end = lookup(evidences, pmcid, "Evidence End")

            if pid in SKIP_PROMPT_IDS:
                continue

            if label == -1:
                continue

            evidence = extract_evidence(pmcid, start, end)

            if self.config.schema == "source":

                feature_dict = {
                    "id": uid,
                    "pmcid": pmcid,
                    "prompt_id": pid,
                    "intervention": sample["Intervention"],
                    "comparator": sample["Comparator"],
                    "outcome": sample["Outcome"],
                    "evidence": evidence,
                    "label": label,
                }

                uid += 1
                yield key, feature_dict

            elif self.config.schema == "bigbio_qa":

                context = evidence
                question = (
                    f"Compared to {sample['Comparator']} "
                    f"what was the result of {sample['Intervention']} on {sample['Outcome']}?"
                )
                feature_dict = {
                    "id": uid,
                    "question_id": pid,
                    "document_id": pmcid,
                    "question": question,
                    "type": "multiple_choice",
                    "choices": QA_CHOICES,
                    "context": context,
                    "answer": [label],
                }

                uid += 1
                yield key, feature_dict