File size: 10,746 Bytes
a5b3217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The dataset consists of biomedical articles describing randomized control trials (RCTs)
that compare multiple treatments. Each of these articles will have multiple questions,
or 'prompts' associated with them. These prompts will ask about the relationship between
an intervention and comparator with respect to an outcome, as reported in the trial.
For example, a prompt may ask about the reported effects of aspirin as compared to placebo
on the duration of headaches.
For the sake of this task, we assume that a particular article will report that the intervention of interest either
significantly increased, significantly decreased or had significant effect on the outcome, relative to the comparator.
"""
import os
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from .bigbiohub import qa_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{deyoung-etal-2020-evidence,
title = "Evidence Inference 2.0: More Data, Better Models",
author = "DeYoung, Jay and
Lehman, Eric and
Nye, Benjamin and
Marshall, Iain and
Wallace, Byron C.",
booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.bionlp-1.13",
pages = "123--132",
}
"""
_DATASETNAME = "evidence_inference"
_DISPLAYNAME = "Evidence Inference 2.0"
_DESCRIPTION = """\
The dataset consists of biomedical articles describing randomized control trials (RCTs) that compare multiple
treatments. Each of these articles will have multiple questions, or 'prompts' associated with them.
These prompts will ask about the relationship between an intervention and comparator with respect to an outcome,
as reported in the trial. For example, a prompt may ask about the reported effects of aspirin as compared
to placebo on the duration of headaches. For the sake of this task, we assume that a particular article
will report that the intervention of interest either significantly increased, significantly decreased
or had significant effect on the outcome, relative to the comparator.
"""
_HOMEPAGE = "https://github.com/jayded/evidence-inference"
_LICENSE = 'MIT License'
_URLS = {
_DATASETNAME: "http://evidence-inference.ebm-nlp.com/v2.0.tar.gz",
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "2.0.0"
_BIGBIO_VERSION = "1.0.0"
QA_CHOICES = [
"significantly increased",
"no significant difference",
"significantly decreased",
]
# Some examples are removed due to comments on the dataset's github page
# https://github.com/jayded/evidence-inference/blob/master/annotations/README.md#caveat
INCORRECT_PROMPT_IDS = set([
911, 912, 1262, 1261, 3044, 3248, 3111, 3620, 4308, 4490, 4491, 4324,
4325, 4492, 4824, 5000, 5001, 5002, 5046, 5047, 4948, 5639, 5710, 5752,
5775, 5782, 5841, 5843, 5861, 5862, 5863, 5964, 5965, 5966, 5975, 4807,
5776, 5777, 5778, 5779, 5780, 5781, 6034, 6065, 6066, 6666, 6667, 6668,
6669, 7040, 7042, 7944, 8590, 8605, 8606, 8639, 8640, 8745, 8747, 8749,
8877, 8878, 8593, 8631, 8635, 8884, 8886, 8773, 10032, 10035, 8876, 8875,
8885, 8917, 8921, 8118, 10885, 10886, 10887, 10888, 10889, 10890
])
QUESTIONABLE_PROMPT_IDS = set([
7811, 7812, 7813, 7814, 7815, 8197, 8198, 8199,
8200, 8201, 9429, 9430, 9431, 8536, 9432
])
SOMEWHAT_MALFORMED_PROMPT_IDS = set([
3514, 346, 5037, 4715, 8767, 9295, 9297, 8870, 9862
])
SKIP_PROMPT_IDS = INCORRECT_PROMPT_IDS | QUESTIONABLE_PROMPT_IDS | SOMEWHAT_MALFORMED_PROMPT_IDS
class EvidenceInferenceDataset(datasets.GeneratorBasedBuilder):
f"""{_DESCRIPTION}"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="evidence-inference_source",
version=SOURCE_VERSION,
description="evidence-inference source schema",
schema="source",
subset_id="evidence-inference",
),
BigBioConfig(
name="evidence-inference_bigbio_qa",
version=BIGBIO_VERSION,
description="evidence-inference BigBio schema",
schema="bigbio_qa",
subset_id="evidence-inference",
),
]
DEFAULT_CONFIG_NAME = "evidence-inference_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"prompt_id": datasets.Value("int64"),
"pmcid": datasets.Value("int64"),
"label": datasets.Value("string"),
"evidence": datasets.Value("string"),
"intervention": datasets.Value("string"),
"comparator": datasets.Value("string"),
"outcome": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_qa":
features = qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": [
os.path.join(data_dir, "annotations_merged.csv"),
os.path.join(data_dir, "prompts_merged.csv"),
],
"datapath": os.path.join(data_dir, "txt_files"),
"split": "train",
"datadir": data_dir,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": [
os.path.join(data_dir, "annotations_merged.csv"),
os.path.join(data_dir, "prompts_merged.csv"),
],
"datapath": os.path.join(data_dir, "txt_files"),
"split": "validation",
"datadir": data_dir,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": [
os.path.join(data_dir, "annotations_merged.csv"),
os.path.join(data_dir, "prompts_merged.csv"),
],
"datapath": os.path.join(data_dir, "txt_files"),
"split": "test",
"datadir": data_dir,
},
),
]
def _generate_examples(
self, filepaths, datapath, split, datadir
) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(f"{datadir}/splits/{split}_article_ids.txt", "r") as f:
ids = [int(i.strip()) for i in f.readlines()]
prompts = pd.read_csv(filepaths[-1], encoding="utf8")
prompts = prompts[prompts["PMCID"].isin(ids)]
annotations = pd.read_csv(filepaths[0], encoding="utf8").set_index("PromptID")
evidences = pd.read_csv(filepaths[0], encoding="utf8").set_index("PMCID")
evidences = evidences[evidences["Evidence Start"] != -1]
uid = 0
def lookup(df: pd.DataFrame, id, col) -> str:
try:
label = df.loc[id][col]
if isinstance(label, pd.Series):
return label.values[0]
else:
return label
except KeyError:
return -1
def extract_evidence(doc_id, start, end):
p = f"{datapath}/PMC{doc_id}.txt"
with open(p, "r") as f:
return f.read()[start:end]
for key, sample in prompts.iterrows():
pid = sample["PromptID"]
pmcid = sample["PMCID"]
label = lookup(annotations, pid, "Label")
start = lookup(evidences, pmcid, "Evidence Start")
end = lookup(evidences, pmcid, "Evidence End")
if pid in SKIP_PROMPT_IDS:
continue
if label == -1:
continue
evidence = extract_evidence(pmcid, start, end)
if self.config.schema == "source":
feature_dict = {
"id": uid,
"pmcid": pmcid,
"prompt_id": pid,
"intervention": sample["Intervention"],
"comparator": sample["Comparator"],
"outcome": sample["Outcome"],
"evidence": evidence,
"label": label,
}
uid += 1
yield key, feature_dict
elif self.config.schema == "bigbio_qa":
context = evidence
question = (
f"Compared to {sample['Comparator']} "
f"what was the result of {sample['Intervention']} on {sample['Outcome']}?"
)
feature_dict = {
"id": uid,
"question_id": pid,
"document_id": pmcid,
"question": question,
"type": "multiple_choice",
"choices": QA_CHOICES,
"context": context,
"answer": [label],
}
uid += 1
yield key, feature_dict
|