Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
gabrielaltay commited on
Commit
a0e2fc6
·
1 Parent(s): 8fd9f1a

upload hub_repos/genetag/README.md to hub from bigbio repo

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ language:
4
+ - en
5
+ license: other
6
+ license_bigbio_shortname: NCBI_LICENSE
7
+ pretty_name: GENETAG
8
+ ---
9
+
10
+
11
+ # Dataset Card for GENETAG
12
+
13
+ ## Dataset Description
14
+
15
+ - **Homepage:** https://github.com/openbiocorpora/genetag
16
+ - **Pubmed:** True
17
+ - **Public:** True
18
+ - **Tasks:** Named Entity Recognition
19
+
20
+
21
+ Named entity recognition (NER) is an important first step for text mining the biomedical literature.
22
+ Evaluating the performance of biomedical NER systems is impossible without a standardized test corpus.
23
+ The annotation of such a corpus for gene/protein name NER is a difficult process due to the complexity
24
+ of gene/protein names. We describe the construction and annotation of GENETAG, a corpus of 20K MEDLINE®
25
+ sentences for gene/protein NER. 15K GENETAG sentences were used for the BioCreAtIvE Task 1A Competition..
26
+
27
+
28
+
29
+ ## Citation Information
30
+
31
+ ```
32
+ @article{Tanabe2005,
33
+ author = {Lorraine Tanabe and Natalie Xie and Lynne H Thom and Wayne Matten and W John Wilbur},
34
+ title = {{GENETAG}: a tagged corpus for gene/protein named entity recognition},
35
+ journal = {{BMC} Bioinformatics},
36
+ volume = {6},
37
+ year = {2005},
38
+ url = {https://doi.org/10.1186/1471-2105-6-S1-S3},
39
+ doi = {10.1186/1471-2105-6-s1-s3},
40
+ biburl = {},
41
+ bibsource = {}
42
+ }
43
+
44
+ ```