gabrielaltay
commited on
Commit
•
949eaa3
1
Parent(s):
0038745
upload hubscripts/genia_term_corpus_hub.py to hub from bigbio repo
Browse files- genia_term_corpus.py +313 -0
genia_term_corpus.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
The identification of linguistic expressions referring to entities of interest in molecular biology such as proteins,
|
18 |
+
genes and cells is a fundamental task in biomolecular text mining. The GENIA technical term annotation covers the
|
19 |
+
identification of physical biological entities as well as other important terms. The corpus annotation covers the full
|
20 |
+
1,999 abstracts of the primary GENIA corpus.
|
21 |
+
"""
|
22 |
+
|
23 |
+
import xml.etree.ElementTree as ET
|
24 |
+
from itertools import count
|
25 |
+
from typing import Dict, List, Tuple
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
|
29 |
+
from .bigbiohub import kb_features
|
30 |
+
from .bigbiohub import BigBioConfig
|
31 |
+
from .bigbiohub import Tasks
|
32 |
+
|
33 |
+
_LANGUAGES = ['English']
|
34 |
+
_PUBMED = True
|
35 |
+
_LOCAL = False
|
36 |
+
_CITATION = """\
|
37 |
+
@inproceedings{10.5555/1289189.1289260,
|
38 |
+
author = {Ohta, Tomoko and Tateisi, Yuka and Kim, Jin-Dong},
|
39 |
+
title = {The GENIA Corpus: An Annotated Research Abstract Corpus in Molecular Biology Domain},
|
40 |
+
year = {2002},
|
41 |
+
publisher = {Morgan Kaufmann Publishers Inc.},
|
42 |
+
address = {San Francisco, CA, USA},
|
43 |
+
booktitle = {Proceedings of the Second International Conference on Human Language Technology Research},
|
44 |
+
pages = {82–86},
|
45 |
+
numpages = {5},
|
46 |
+
location = {San Diego, California},
|
47 |
+
series = {HLT '02}
|
48 |
+
}
|
49 |
+
|
50 |
+
@article{Kim2003GENIAC,
|
51 |
+
title={GENIA corpus - a semantically annotated corpus for bio-textmining},
|
52 |
+
author={Jin-Dong Kim and Tomoko Ohta and Yuka Tateisi and Junichi Tsujii},
|
53 |
+
journal={Bioinformatics},
|
54 |
+
year={2003},
|
55 |
+
volume={19 Suppl 1},
|
56 |
+
pages={
|
57 |
+
i180-2
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
@inproceedings{10.5555/1567594.1567610,
|
62 |
+
author = {Kim, Jin-Dong and Ohta, Tomoko and Tsuruoka, Yoshimasa and Tateisi, Yuka and Collier, Nigel},
|
63 |
+
title = {Introduction to the Bio-Entity Recognition Task at JNLPBA},
|
64 |
+
year = {2004},
|
65 |
+
publisher = {Association for Computational Linguistics},
|
66 |
+
address = {USA},
|
67 |
+
booktitle = {Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its
|
68 |
+
Applications},
|
69 |
+
pages = {70–75},
|
70 |
+
numpages = {6},
|
71 |
+
location = {Geneva, Switzerland},
|
72 |
+
series = {JNLPBA '04}
|
73 |
+
}
|
74 |
+
"""
|
75 |
+
|
76 |
+
_DATASETNAME = "genia_term_corpus"
|
77 |
+
_DISPLAYNAME = "GENIA Term Corpus"
|
78 |
+
|
79 |
+
_DESCRIPTION = """\
|
80 |
+
The identification of linguistic expressions referring to entities of interest in molecular biology such as proteins,
|
81 |
+
genes and cells is a fundamental task in biomolecular text mining. The GENIA technical term annotation covers the
|
82 |
+
identification of physical biological entities as well as other important terms. The corpus annotation covers the full
|
83 |
+
1,999 abstracts of the primary GENIA corpus.
|
84 |
+
"""
|
85 |
+
|
86 |
+
_HOMEPAGE = "http://www.geniaproject.org/genia-corpus/term-corpus"
|
87 |
+
|
88 |
+
_LICENSE = 'GENIA Project License for Annotated Corpora'
|
89 |
+
|
90 |
+
_URLS = {
|
91 |
+
_DATASETNAME: "http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Term/GENIAcorpus3.02.tgz",
|
92 |
+
}
|
93 |
+
|
94 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
95 |
+
|
96 |
+
_SOURCE_VERSION = "3.0.2"
|
97 |
+
|
98 |
+
_BIGBIO_VERSION = "1.0.0"
|
99 |
+
|
100 |
+
|
101 |
+
class GeniaTermCorpusDataset(datasets.GeneratorBasedBuilder):
|
102 |
+
"""TODO: Short description of my dataset."""
|
103 |
+
|
104 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
105 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
106 |
+
|
107 |
+
BUILDER_CONFIGS = [
|
108 |
+
BigBioConfig(
|
109 |
+
name="genia_term_corpus_source",
|
110 |
+
version=SOURCE_VERSION,
|
111 |
+
description="genia_term_corpus source schema",
|
112 |
+
schema="source",
|
113 |
+
subset_id="genia_term_corpus",
|
114 |
+
),
|
115 |
+
BigBioConfig(
|
116 |
+
name="genia_term_corpus_bigbio_kb",
|
117 |
+
version=BIGBIO_VERSION,
|
118 |
+
description="genia_term_corpus BigBio schema",
|
119 |
+
schema="bigbio_kb",
|
120 |
+
subset_id="genia_term_corpus",
|
121 |
+
),
|
122 |
+
]
|
123 |
+
|
124 |
+
DEFAULT_CONFIG_NAME = "genia_term_corpus_source"
|
125 |
+
|
126 |
+
def _info(self) -> datasets.DatasetInfo:
|
127 |
+
if self.config.schema == "source":
|
128 |
+
features = datasets.Features(
|
129 |
+
{
|
130 |
+
"document_id": datasets.Value("string"),
|
131 |
+
"title": [
|
132 |
+
{
|
133 |
+
"text": datasets.Value("string"),
|
134 |
+
"entities": [
|
135 |
+
{
|
136 |
+
"text": datasets.Value("string"),
|
137 |
+
"lex": datasets.Value("string"),
|
138 |
+
"sem": datasets.Value("string"),
|
139 |
+
}
|
140 |
+
],
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"abstract": [
|
144 |
+
{
|
145 |
+
"text": datasets.Value("string"),
|
146 |
+
"entities": [
|
147 |
+
{
|
148 |
+
"text": datasets.Value("string"),
|
149 |
+
"lex": datasets.Value("string"),
|
150 |
+
"sem": datasets.Value("string"),
|
151 |
+
}
|
152 |
+
],
|
153 |
+
}
|
154 |
+
],
|
155 |
+
}
|
156 |
+
)
|
157 |
+
|
158 |
+
elif self.config.schema == "bigbio_kb":
|
159 |
+
features = kb_features
|
160 |
+
|
161 |
+
return datasets.DatasetInfo(
|
162 |
+
description=_DESCRIPTION,
|
163 |
+
features=features,
|
164 |
+
homepage=_HOMEPAGE,
|
165 |
+
license=str(_LICENSE),
|
166 |
+
citation=_CITATION,
|
167 |
+
)
|
168 |
+
|
169 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
170 |
+
"""Returns SplitGenerators."""
|
171 |
+
urls = _URLS[_DATASETNAME]
|
172 |
+
data_dir = dl_manager.download(urls)
|
173 |
+
return [
|
174 |
+
datasets.SplitGenerator(
|
175 |
+
name=datasets.Split.TRAIN,
|
176 |
+
gen_kwargs={
|
177 |
+
"archive": dl_manager.iter_archive(data_dir),
|
178 |
+
"data_path": "GENIA_term_3.02/GENIAcorpus3.02.xml",
|
179 |
+
},
|
180 |
+
),
|
181 |
+
]
|
182 |
+
|
183 |
+
def _generate_examples(self, archive, data_path) -> Tuple[int, Dict]:
|
184 |
+
"""Yields examples as (key, example) tuples."""
|
185 |
+
uid = count(0)
|
186 |
+
for path, file in archive:
|
187 |
+
if path == data_path:
|
188 |
+
for key, example in enumerate(iterparse_genia(file)):
|
189 |
+
if self.config.schema == "source":
|
190 |
+
yield key, example
|
191 |
+
|
192 |
+
elif self.config.schema == "bigbio_kb":
|
193 |
+
yield key, parse_genia_to_bigbio(example, uid)
|
194 |
+
|
195 |
+
|
196 |
+
def iterparse_genia(file):
|
197 |
+
# ontology = None
|
198 |
+
for _, element in ET.iterparse(file):
|
199 |
+
# if element.tag == "import":
|
200 |
+
# ontology = {"name": element.get("resource"), "prefix": element.get("prefix")}
|
201 |
+
if element.tag == "article":
|
202 |
+
bibliomisc = element.find("articleinfo/bibliomisc").text
|
203 |
+
document_id = parse_genia_bibliomisc(bibliomisc)
|
204 |
+
title = element.find("title")
|
205 |
+
title_sentences = parse_genia_sentences(title)
|
206 |
+
abstract = element.find("abstract")
|
207 |
+
abstract_sentences = parse_genia_sentences(abstract)
|
208 |
+
yield {
|
209 |
+
"document_id": document_id,
|
210 |
+
"title": title_sentences,
|
211 |
+
"abstract": abstract_sentences,
|
212 |
+
}
|
213 |
+
|
214 |
+
|
215 |
+
def parse_genia_sentences(passage):
|
216 |
+
sentences = []
|
217 |
+
for sentence in passage.iter(tag="sentence"):
|
218 |
+
text = "".join(sentence.itertext())
|
219 |
+
entities = []
|
220 |
+
for entity in sentence.iter(tag="cons"): # constituent
|
221 |
+
entity_lex = entity.get("lex", "")
|
222 |
+
entity_sem = parse_genia_sem(entity.get("sem", ""))
|
223 |
+
entity_text = "".join(entity.itertext())
|
224 |
+
entities.append({"text": entity_text, "lex": entity_lex, "sem": entity_sem})
|
225 |
+
sentences.append(
|
226 |
+
{
|
227 |
+
"text": text,
|
228 |
+
"entities": entities,
|
229 |
+
}
|
230 |
+
)
|
231 |
+
return sentences
|
232 |
+
|
233 |
+
|
234 |
+
def parse_genia_bibliomisc(bibliomisc):
|
235 |
+
"""Remove 'MEDLINE:' from 'MEDLINE:96055286'."""
|
236 |
+
return bibliomisc.replace("MEDLINE:", "") if ":" in bibliomisc else bibliomisc
|
237 |
+
|
238 |
+
|
239 |
+
def parse_genia_sem(sem):
|
240 |
+
return sem.replace("G#", "") if "G#" in sem else sem
|
241 |
+
|
242 |
+
|
243 |
+
def parse_genia_to_bigbio(example, uid):
|
244 |
+
document = {
|
245 |
+
"id": next(uid),
|
246 |
+
"document_id": example["document_id"],
|
247 |
+
"passages": list(generate_bigbio_passages(example, uid)),
|
248 |
+
"entities": list(generate_bigbio_entities(example, uid)),
|
249 |
+
"events": [],
|
250 |
+
"coreferences": [],
|
251 |
+
"relations": [],
|
252 |
+
}
|
253 |
+
return document
|
254 |
+
|
255 |
+
|
256 |
+
def parse_genia_to_bigbio_passage(passage, uid, type="", offset=0):
|
257 |
+
text = " ".join(sentence["text"] for sentence in passage)
|
258 |
+
new_offset = offset + len(text)
|
259 |
+
return {
|
260 |
+
"id": next(uid),
|
261 |
+
"type": type,
|
262 |
+
"text": [text],
|
263 |
+
"offsets": [[offset, new_offset]],
|
264 |
+
}, new_offset + 1
|
265 |
+
|
266 |
+
|
267 |
+
def generate_bigbio_passages(example, uid):
|
268 |
+
offset = 0
|
269 |
+
for type in ["title", "abstract"]:
|
270 |
+
passage, offset = parse_genia_to_bigbio_passage(
|
271 |
+
example[type], uid, type=type, offset=offset
|
272 |
+
)
|
273 |
+
yield passage
|
274 |
+
|
275 |
+
|
276 |
+
def parse_genia_to_bigbio_entity(entity, uid, text="", relative_offset=0, offset=0):
|
277 |
+
try:
|
278 |
+
relative_offset = text.index(entity["text"], relative_offset)
|
279 |
+
except ValueError:
|
280 |
+
# Skip duplicated annotations:
|
281 |
+
# <cons lex="tumour_cell" sem="G#cell_type"><cons lex="tumour_cell" sem="G#cell_type">tumour cells</cons></cons>
|
282 |
+
return None, None
|
283 |
+
new_relative_offset = relative_offset + len(entity["text"])
|
284 |
+
return {
|
285 |
+
"id": next(uid),
|
286 |
+
"offsets": [[offset + relative_offset, offset + new_relative_offset]],
|
287 |
+
"text": [entity["text"]],
|
288 |
+
"type": entity["sem"],
|
289 |
+
"normalized": [],
|
290 |
+
}, new_relative_offset
|
291 |
+
|
292 |
+
|
293 |
+
def generate_bigbio_entities(example, uid):
|
294 |
+
sentence_offset = 0
|
295 |
+
for type in ["title", "abstract"]:
|
296 |
+
for sentence in example[type]:
|
297 |
+
relative_offsets = {}
|
298 |
+
for entity in sentence["entities"]:
|
299 |
+
bigbio_entity, new_relative_offset = parse_genia_to_bigbio_entity(
|
300 |
+
entity,
|
301 |
+
uid,
|
302 |
+
text=sentence["text"],
|
303 |
+
relative_offset=relative_offsets.get(
|
304 |
+
(entity["text"], entity["lex"], entity["sem"]), 0
|
305 |
+
),
|
306 |
+
offset=sentence_offset,
|
307 |
+
)
|
308 |
+
if bigbio_entity:
|
309 |
+
relative_offsets[
|
310 |
+
(entity["text"], entity["lex"], entity["sem"])
|
311 |
+
] = new_relative_offset
|
312 |
+
yield bigbio_entity
|
313 |
+
sentence_offset += len(sentence["text"]) + 1
|