Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 11,483 Bytes
237995b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa903b
 
 
 
237995b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa903b
237995b
 
 
 
 
 
caa903b
237995b
 
 
 
 
caa903b
237995b
 
 
 
caa903b
237995b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
HPRD50 is a dataset of randomly selected, hand-annotated abstracts of biomedical papers
referenced by the Human Protein Reference Database (HPRD). It is parsed in XML format,
splitting each abstract into sentences, and in each sentence there may be entities and
interactions between those entities. In this particular dataset, entities are all
proteins and interactions are thus protein-protein interactions.

Moreover, all entities are normalized to the HPRD database. These normalized terms are
stored in each entity's 'type' attribute in the source XML. This means the dataset can
determine e.g. that "Janus kinase 2" and "Jak2" are referencing the same normalized
entity.

Because the dataset contains entities and relations, it is suitable for Named Entity
Recognition and Relation Extraction.
"""

from typing import Dict, List, Tuple
from xml.etree import ElementTree

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

# TODO: Add BibTeX citation
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{fundel2007relex,
  title={RelEx—Relation extraction using dependency parse trees},
  author={Fundel, Katrin and K{\"u}ffner, Robert and Zimmer, Ralf},
  journal={Bioinformatics},
  volume={23},
  number={3},
  pages={365--371},
  year={2007},
  publisher={Oxford University Press}
}
"""

_DATASETNAME = "hprd50"
_DISPLAYNAME = "HPRD50"

_DESCRIPTION = """\
HPRD50 is a dataset of randomly selected, hand-annotated abstracts of biomedical papers
referenced by the Human Protein Reference Database (HPRD). It is parsed in XML format,
splitting each abstract into sentences, and in each sentence there may be entities and
interactions between those entities. In this particular dataset, entities are all
proteins and interactions are thus protein-protein interactions.

Moreover, all entities are normalized to the HPRD database. These normalized terms are
stored in each entity's 'type' attribute in the source XML. This means the dataset can
determine e.g. that "Janus kinase 2" and "Jak2" are referencing the same normalized
entity.

Because the dataset contains entities and relations, it is suitable for Named Entity
Recognition and Relation Extraction.
"""

_HOMEPAGE = ""

_LICENSE = 'License information unavailable'

_URLS = {
    _DATASETNAME: {
        "train": "https://github.com/metalrt/ppi-dataset/raw/master/csv_output/HPRD50-train.xml",
        "test": "https://github.com/metalrt/ppi-dataset/raw/master/csv_output/HPRD50-test.xml",
    },
}

_SUPPORTED_TASKS = [
    Tasks.RELATION_EXTRACTION,
    Tasks.NAMED_ENTITY_RECOGNITION,
]  # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


def parse_xml_source(document_trees):
    entries = []
    for doc in document_trees:
        document = {
            "id": doc.get("id"),
            "origId": doc.get("origId"),
            "set": doc.get("test"),
            "sentences": [],
        }
        for s in doc.findall("sentence"):
            sentence = {
                "id": s.get("id"),
                "origId": s.get("origId"),
                "charOffset": s.get("charOffset"),
                "text": s.get("text"),
                "entities": [],
                "interactions": [],
            }

            for e in s.findall("entity"):
                entity = {
                    "id": e.get("id"),
                    "origId": e.get("origId"),
                    "charOffset": e.get("charOffset"),
                    "text": e.get("text"),
                    "type": e.get("type"),
                }

                sentence["entities"].append(entity)

            for i in s.findall("interaction"):
                interaction = {
                    "id": i.get("id"),
                    "e1": i.get("e1"),
                    "e2": i.get("e2"),
                    "type": i.get("type"),
                }
                sentence["interactions"].append(interaction)

            document["sentences"].append(sentence)

        entries.append(document)
    return entries


def parse_xml_bigbio_kb(document_trees):
    entries = []
    for doc in document_trees:
        document = {
            "id": doc.get("id"),
            "document_id": doc.get("origId"),
            "passages": [],
            "entities": [],
            "relations": [],
            "events": [],
            "coreferences": [],
        }
        for s in doc.findall("sentence"):

            offset = s.get("charOffset").split("-")
            start = int(offset[0])
            end = int(offset[1])

            passage = {
                "id": s.get("id"),
                "type": "sentence",
                "text": [s.get("text")],
                "offsets": [[start, end]],
            }

            document["passages"].append(passage)

            for e in s.findall("entity"):

                offset = e.get("charOffset").split("-")
                start = int(offset[0])
                end = int(offset[1])

                entity = {
                    "id": e.get("id"),
                    "text": [e.get("text")],
                    "offsets": [[start, end]],
                    "type": "protein",
                    "normalized": [{"db_name": "HPRD", "db_id": e.get("type")}],
                }

                document["entities"].append(entity)

            for i in s.findall("interaction"):
                relation = {
                    "id": i.get("id"),
                    "arg1_id": i.get("e1"),
                    "arg2_id": i.get("e2"),
                    "type": i.get("type"),
                    "normalized": [],
                }
                document["relations"].append(relation)

        entries.append(document)
    return entries


class HPRD50Dataset(datasets.GeneratorBasedBuilder):
    """
    HPRD50 is a dataset of randomly selected, hand-annotated abstracts of biomedical papers
    referenced by the Human Protein Reference Database (HPRD). It is parsed in XML format,
    splitting each abstract into sentences, and in each sentence there may be entities and
    interactions between those entities. In this particular dataset, entities are all
    proteins and interactions are thus protein-protein interactions.

    Moreover, all entities are normalized to the HPRD database. These normalized terms are
    stored in each entity's 'type' attribute in the source XML. This means the dataset can
    determine e.g. that "Janus kinase 2" and "Jak2" are referencing the same normalized
    entity.

    Because the dataset contains entities and relations, it is suitable for Named Entity
    Recognition and Relation Extraction.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="hprd50_source",
            version=SOURCE_VERSION,
            description="hprd50 source schema",
            schema="source",
            subset_id="hprd50",
        ),
        BigBioConfig(
            name="hprd50_bigbio_kb",
            version=BIGBIO_VERSION,
            description="hprd50 BigBio schema",
            schema="bigbio_kb",
            subset_id="hprd50",
        ),
    ]

    DEFAULT_CONFIG_NAME = "hprd50_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "origId": datasets.Value("string"),
                    "set": datasets.Value("string"),
                    "sentences": [
                        {
                            "id": datasets.Value("string"),
                            "origId": datasets.Value("string"),
                            "charOffset": datasets.Value("string"),
                            "text": datasets.Value("string"),
                            "entities": [
                                {
                                    "id": datasets.Value("string"),
                                    "origId": datasets.Value("string"),
                                    "charOffset": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                    "type": datasets.Value("string"),
                                }
                            ],
                            "interactions": [
                                {
                                    "id": datasets.Value("string"),
                                    "e1": datasets.Value("string"),
                                    "e2": datasets.Value("string"),
                                    "type": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                },
            ),
        ]

    def _generate_examples(self, filepath) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        with open(filepath, "r") as f:
            content = f.read()

        tree = ElementTree.fromstring(content)
        documents = tree.findall("document")

        if self.config.schema == "source":
            entries = parse_xml_source(documents)
            for key, example in enumerate(entries):
                yield key, example

        elif self.config.schema == "bigbio_kb":
            entries = parse_xml_bigbio_kb(documents)
            for key, example in enumerate(entries):
                yield key, example


# This template is based on the following template from the datasets package:
# https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py