Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 10,563 Bytes
c4b832b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
The IEPA benchmark PPI corpus is designed for relation extraction. It was
created from 303 PubMed abstracts, each of which contains a specific pair of
co-occurring chemicals.
"""

# Comment from Author
# BigBio schema fixes offsets of entities to an offset where 0 is the start of the document.
# (In source offsets of entities start from 0 for each passage in document)
# Offsets of entities in source remain unchanged.

import xml.dom.minidom as xml
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@ARTICLE{ding2001mining,
  title    = "Mining {MEDLINE}: abstracts, sentences, or phrases?",
  author   = "Ding, J and Berleant, D and Nettleton, D and Wurtele, E",
  journal  = "Pac Symp Biocomput",
  pages    = "326--337",
  year     =  2002,
  address  = "United States",
  language = "en"
}
"""

_DATASETNAME = "iepa"
_DISPLAYNAME = "IEPA"

_DESCRIPTION = """\
The IEPA benchmark PPI corpus is designed for relation extraction. It was \
created from 303 PubMed abstracts, each of which contains a specific pair of \
co-occurring chemicals.
"""

_HOMEPAGE = "http://psb.stanford.edu/psb-online/proceedings/psb02/abstracts/p326.html"

_LICENSE = 'License information unavailable'

_URLS = {
    _DATASETNAME: {
        "train": "https://raw.githubusercontent.com/metalrt/ppi-dataset/master/csv_output/IEPA-train.xml",
        "test": "https://raw.githubusercontent.com/metalrt/ppi-dataset/master/csv_output/IEPA-test.xml",
    },
}

_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class IepaDataset(datasets.GeneratorBasedBuilder):
    """The IEPA benchmark PPI corpus is designed for relation extraction."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="iepa_source",
            version=SOURCE_VERSION,
            description="IEPA source schema",
            schema="source",
            subset_id="iepa",
        ),
        BigBioConfig(
            name="iepa_bigbio_kb",
            version=BIGBIO_VERSION,
            description="IEPA BigBio schema",
            schema="bigbio_kb",
            subset_id="iepa",
        ),
    ]

    DEFAULT_CONFIG_NAME = "iepa_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "PMID": datasets.Value("string"),
                    "origID": datasets.Value("string"),
                    "sentences": [
                        {
                            "id": datasets.Value("string"),
                            "origID": datasets.Value("string"),
                            "offsets": [datasets.Value("int32")],
                            "text": datasets.Value("string"),
                            "entities": [
                                {
                                    "id": datasets.Value("string"),
                                    "origID": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                    "offsets": [datasets.Value("int32")],
                                }
                            ],
                            "interactions": [
                                {
                                    "id": datasets.Value("string"),
                                    "e1": datasets.Value("string"),
                                    "e2": datasets.Value("string"),
                                    "type": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                },
            ),
        ]

    def _generate_examples(self, filepath) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        collection = xml.parse(filepath).documentElement

        if self.config.schema == "source":
            for id, document in self._parse_documents(collection):
                yield id, document

        elif self.config.schema == "bigbio_kb":
            for id, document in self._parse_documents(collection):
                yield id, self._source_to_bigbio(document)

    def _parse_documents(self, collection):
        for document in collection.getElementsByTagName("document"):
            pmid_doc = self._strict_get_attribute(document, "PMID")
            id_doc = self._strict_get_attribute(document, "id")
            origID_doc = self._strict_get_attribute(document, "origID")
            sentences = []
            for sentence in document.getElementsByTagName("sentence"):
                offsets_sent = self._strict_get_attribute(sentence, "charOffset").split(
                    "-"
                )
                id_sent = self._strict_get_attribute(sentence, "id")
                origID_sent = self._strict_get_attribute(sentence, "origID")
                text_sent = self._strict_get_attribute(sentence, "text")

                entities = []
                for entity in sentence.getElementsByTagName("entity"):
                    id_ent = self._strict_get_attribute(entity, "id")
                    origID_ent = self._strict_get_attribute(entity, "origID")
                    text_ent = self._strict_get_attribute(entity, "text")
                    offsets_ent = self._strict_get_attribute(
                        entity, "charOffset"
                    ).split("-")
                    entities.append(
                        {
                            "id": id_ent,
                            "origID": origID_ent,
                            "text": text_ent,
                            "offsets": offsets_ent,
                        }
                    )

                interactions = []
                for interaction in sentence.getElementsByTagName("interaction"):
                    id_int = self._strict_get_attribute(interaction, "id")
                    e1_int = self._strict_get_attribute(interaction, "e1")
                    e2_int = self._strict_get_attribute(interaction, "e2")
                    type_int = self._strict_get_attribute(interaction, "type")
                    interactions.append(
                        {"id": id_int, "e1": e1_int, "e2": e2_int, "type": type_int}
                    )

                sentences.append(
                    {
                        "id": id_sent,
                        "origID": origID_sent,
                        "offsets": offsets_sent,
                        "text": text_sent,
                        "entities": entities,
                        "interactions": interactions,
                    }
                )
            yield id_doc, {
                "id": id_doc,
                "PMID": pmid_doc,
                "origID": origID_doc,
                "sentences": sentences,
            }

    def _strict_get_attribute(self, element, key):
        if element.hasAttribute(key):
            return element.getAttribute(key)
        else:
            raise ValueError(f"No such key exists in element: {element.tagName} {key}")

    def _source_to_bigbio(self, document_):
        document = {}
        document["id"] = document_["id"]
        document["document_id"] = document_["PMID"]

        passages = []
        entities = []
        relations = []
        for sentence_ in document_["sentences"]:
            for entity_ in sentence_["entities"]:
                entity_["type"] = ""
                entity_["normalized"] = []
                entity_.pop("origID")
                entity_["text"] = [entity_["text"]]
                entity_["offsets"] = [
                    [
                        int(sentence_["offsets"][0]) + int(entity_["offsets"][0]),
                        int(sentence_["offsets"][0]) + int(entity_["offsets"][1]),
                    ]
                ]
                entities.append(entity_)
            for relation_ in sentence_["interactions"]:
                relation_["arg1_id"] = relation_.pop("e1")
                relation_["arg2_id"] = relation_.pop("e2")
                relation_["normalized"] = []
                relations.append(relation_)

            sentence_.pop("entities")
            sentence_.pop("interactions")
            sentence_.pop("origID")
            sentence_["type"] = ""
            sentence_["text"] = [sentence_["text"]]
            sentence_["offsets"] = [sentence_["offsets"]]
            passages.append(sentence_)

        document["passages"] = passages
        document["entities"] = entities
        document["relations"] = relations
        document["events"] = []
        document["coreferences"] = []
        return document