File size: 13,437 Bytes
24c19f4 0cf34d2 24c19f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and Simon Ott, github: nomisto
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The LLL05 challenge task is to learn rules to extract protein/gene interactions from biology abstracts from the Medline
bibliography database. The goal of the challenge is to test the ability of the participating IE systems to identify the
interactions and the gene/proteins that interact. The participants will test their IE patterns on a test set with the
aim of extracting the correct agent and target.The challenge focuses on information extraction of gene interactions in
Bacillus subtilis. Extracting gene interaction is the most popular event IE task in biology. Bacillus subtilis (Bs) is
a model bacterium and many papers have been published on direct gene interactions involved in sporulation. The gene
interactions are generally mentioned in the abstract and the full text of the paper is not needed. Extracting gene
interaction means, extracting the agent (proteins) and the target (genes) of all couples of genic interactions from
sentences.
"""
# NOTE:
# word stop offsets are increased by one to be consistent with python slicing.
# test set does not include entity relation information
import itertools as it
from typing import List
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import BigBioValues
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{article,
author = {Nédellec, C.},
year = {2005},
month = {01},
pages = {},
title = {Learning Language in Logic - Genic Interaction Extraction Challenge},
journal = {Proceedings of the Learning Language in Logic 2005 Workshop at the \
International Conference on Machine Learning}
}
"""
_DATASETNAME = "lll"
_DISPLAYNAME = "LLL05"
_DESCRIPTION = """\
The LLL05 challenge task is to learn rules to extract protein/gene interactions from biology abstracts from the Medline
bibliography database. The goal of the challenge is to test the ability of the participating IE systems to identify the
interactions and the gene/proteins that interact. The participants will test their IE patterns on a test set with the
aim of extracting the correct agent and target.The challenge focuses on information extraction of gene interactions in
Bacillus subtilis. Extracting gene interaction is the most popular event IE task in biology. Bacillus subtilis (Bs) is
a model bacterium and many papers have been published on direct gene interactions involved in sporulation. The gene
interactions are generally mentioned in the abstract and the full text of the paper is not needed. Extracting gene
interaction means, extracting the agent (proteins) and the target (genes) of all couples of genic interactions from
sentences.
"""
_HOMEPAGE = "http://genome.jouy.inra.fr/texte/LLLchallenge"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: [
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/train/task2/genic_interaction_linguistic_data.txt", # noqa
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/train/task2/genic_interaction_linguistic_data_coref.txt", # noqa
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/test/task2/enriched_test_data.txt", # noqa
]
}
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class LLLDataset(datasets.GeneratorBasedBuilder):
"""LLL dataset for gene interaction extraction (RE)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="lll_source",
version=SOURCE_VERSION,
description="LLL source schema",
schema="source",
subset_id="lll",
),
BigBioConfig(
name="lll_bigbio_kb",
version=BIGBIO_VERSION,
description="LLL BigBio schema",
schema="bigbio_kb",
subset_id="lll",
),
]
DEFAULT_CONFIG_NAME = "lll_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"sentence": datasets.Value("string"),
"words": [
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"offsets": datasets.Sequence(datasets.Value("int32")),
}
],
"genic_interactions": [
{
"ref_id1": datasets.Value("string"),
"ref_id2": datasets.Value("string"),
}
],
"agents": [
{
"ref_id": datasets.Value("string"),
}
],
"targets": [
{
"ref_id": datasets.Value("string"),
}
],
"lemmas": [
{
"ref_id": datasets.Value("string"),
"lemma": datasets.Value("string"),
}
],
"syntactic_relations": [
{
"type": datasets.Value("string"),
"ref_id1": datasets.Value("string"),
"ref_id2": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
train_path, train_coref_path, test_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_paths": [train_path, train_coref_path],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_paths": [test_path], "split": "test"},
),
]
def _generate_examples(self, data_paths, split):
if self.config.schema == "source":
for path in data_paths:
with open(path, encoding="utf8") as documents:
for document in self._generate_parsed_documents(documents, split):
yield document["id"], document
elif self.config.schema == "bigbio_kb":
uid = it.count(0)
for path in data_paths:
with open(path, encoding="utf8") as documents:
for document in self._generate_parsed_documents(documents, split):
document_ = {}
document_["id"] = next(uid)
document_["document_id"] = document["id"]
document_["passages"] = [
{
"id": next(uid),
"type": BigBioValues.NULL,
"text": [document["sentence"]],
"offsets": [[0, len(document["sentence"])]],
}
]
id_to_word = {i["id"]: i for i in document["words"]}
document_["entities"] = []
for agent in document["agents"]:
word = id_to_word[agent["ref_id"]]
document_["entities"].append(
{
"id": f"{document_['id']}-agent-{word['id']}",
"type": "agent",
"text": [word["text"]],
"offsets": [
[word["offsets"][0], word["offsets"][1]]
],
"normalized": [],
}
)
for agent in document["targets"]:
word = id_to_word[agent["ref_id"]]
document_["entities"].append(
{
"id": f"{document_['id']}-target-{word['id']}",
"type": "target",
"text": [word["text"]],
"offsets": [
[word["offsets"][0], word["offsets"][1]]
],
"normalized": [],
}
)
document_["relations"] = [
{
"id": next(uid),
"type": "genic_interaction",
"arg1_id": f"{document_['id']}-agent-{relation['ref_id1']}",
"arg2_id": f"{document_['id']}-target-{relation['ref_id2']}",
"normalized": [],
}
for relation in document["genic_interactions"]
]
document_["events"] = []
document_["coreferences"] = []
yield document_["document_id"], document_
def _generate_parsed_documents(self, fstream, split):
for raw_document in self._generate_raw_documents(fstream):
yield self._parse_document(raw_document, split)
def _generate_raw_documents(self, fstream):
raw_document = []
for line in fstream:
if "%" in line:
continue
elif line.strip():
raw_document.append(line.strip())
elif raw_document:
if raw_document:
yield raw_document
raw_document = []
# needed for last document
if raw_document:
yield raw_document
def _parse_document(self, raw_document, split):
document = {}
for line in raw_document:
key, value = line.split("\t", 1)
if key in ["ID", "sentence"]:
document[key.lower()] = value
elif key in [
"words",
"genic_interactions",
"agents",
"targets",
"lemmas",
"syntactic_relations",
]:
document[key.lower()] = self._parse_elements(value, key)
else:
raise NotImplementedError()
# Needed as testset does not contain agents, targets and genic_interactions (dataset was part of a challenge)
if split == "test":
document.setdefault("genic_interactions", [])
document.setdefault("agents", [])
document.setdefault("targets", [])
return document
def _parse_elements(self, values, type):
return [self._parse_element(atom, type) for atom in values.split("\t")]
def _parse_element(self, atom, type):
# Sorry for that abomination, parses the arguments from atoms like rel(arg1, ..., argn)
args = atom.split("(", 1)[1][:-1].split(",")
if type == "words":
# fix offsets for python slicing
return {
"id": args[0],
"text": args[1].strip("'"),
"offsets": [int(args[2]), int(args[3]) + 1],
}
elif type == "genic_interactions":
return {"ref_id1": args[0], "ref_id2": args[1]}
elif type == "agents":
return {"ref_id": args[0]}
elif type == "targets":
return {"ref_id": args[0]}
elif type == "lemmas":
return {"ref_id": args[0], "lemma": args[1].strip("'")}
elif type == "syntactic_relations":
return {"type": args[0].strip("'"), "ref_id1": args[1], "ref_id2": args[2]}
|