|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The LLL05 challenge task is to learn rules to extract protein/gene interactions from biology abstracts from the Medline |
|
bibliography database. The goal of the challenge is to test the ability of the participating IE systems to identify the |
|
interactions and the gene/proteins that interact. The participants will test their IE patterns on a test set with the |
|
aim of extracting the correct agent and target.The challenge focuses on information extraction of gene interactions in |
|
Bacillus subtilis. Extracting gene interaction is the most popular event IE task in biology. Bacillus subtilis (Bs) is |
|
a model bacterium and many papers have been published on direct gene interactions involved in sporulation. The gene |
|
interactions are generally mentioned in the abstract and the full text of the paper is not needed. Extracting gene |
|
interaction means, extracting the agent (proteins) and the target (genes) of all couples of genic interactions from |
|
sentences. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
import itertools as it |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import BigBioValues |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{article, |
|
author = {Nédellec, C.}, |
|
year = {2005}, |
|
month = {01}, |
|
pages = {}, |
|
title = {Learning Language in Logic - Genic Interaction Extraction Challenge}, |
|
journal = {Proceedings of the Learning Language in Logic 2005 Workshop at the \ |
|
International Conference on Machine Learning} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "lll" |
|
_DISPLAYNAME = "LLL05" |
|
|
|
_DESCRIPTION = """\ |
|
The LLL05 challenge task is to learn rules to extract protein/gene interactions from biology abstracts from the Medline |
|
bibliography database. The goal of the challenge is to test the ability of the participating IE systems to identify the |
|
interactions and the gene/proteins that interact. The participants will test their IE patterns on a test set with the |
|
aim of extracting the correct agent and target.The challenge focuses on information extraction of gene interactions in |
|
Bacillus subtilis. Extracting gene interaction is the most popular event IE task in biology. Bacillus subtilis (Bs) is |
|
a model bacterium and many papers have been published on direct gene interactions involved in sporulation. The gene |
|
interactions are generally mentioned in the abstract and the full text of the paper is not needed. Extracting gene |
|
interaction means, extracting the agent (proteins) and the target (genes) of all couples of genic interactions from |
|
sentences. |
|
""" |
|
|
|
_HOMEPAGE = "http://genome.jouy.inra.fr/texte/LLLchallenge" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: [ |
|
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/train/task2/genic_interaction_linguistic_data.txt", |
|
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/train/task2/genic_interaction_linguistic_data_coref.txt", |
|
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/test/task2/enriched_test_data.txt", |
|
] |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class LLLDataset(datasets.GeneratorBasedBuilder): |
|
"""LLL dataset for gene interaction extraction (RE)""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="lll_source", |
|
version=SOURCE_VERSION, |
|
description="LLL source schema", |
|
schema="source", |
|
subset_id="lll", |
|
), |
|
BigBioConfig( |
|
name="lll_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="LLL BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="lll", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "lll_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"words": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
], |
|
"genic_interactions": [ |
|
{ |
|
"ref_id1": datasets.Value("string"), |
|
"ref_id2": datasets.Value("string"), |
|
} |
|
], |
|
"agents": [ |
|
{ |
|
"ref_id": datasets.Value("string"), |
|
} |
|
], |
|
"targets": [ |
|
{ |
|
"ref_id": datasets.Value("string"), |
|
} |
|
], |
|
"lemmas": [ |
|
{ |
|
"ref_id": datasets.Value("string"), |
|
"lemma": datasets.Value("string"), |
|
} |
|
], |
|
"syntactic_relations": [ |
|
{ |
|
"type": datasets.Value("string"), |
|
"ref_id1": datasets.Value("string"), |
|
"ref_id2": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
|
urls = _URLS[_DATASETNAME] |
|
train_path, train_coref_path, test_path = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_paths": [train_path, train_coref_path], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_paths": [test_path], "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_paths, split): |
|
|
|
if self.config.schema == "source": |
|
for path in data_paths: |
|
with open(path, encoding="utf8") as documents: |
|
for document in self._generate_parsed_documents(documents, split): |
|
yield document["id"], document |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
uid = it.count(0) |
|
for path in data_paths: |
|
with open(path, encoding="utf8") as documents: |
|
for document in self._generate_parsed_documents(documents, split): |
|
document_ = {} |
|
document_["id"] = next(uid) |
|
document_["document_id"] = document["id"] |
|
|
|
document_["passages"] = [ |
|
{ |
|
"id": next(uid), |
|
"type": BigBioValues.NULL, |
|
"text": [document["sentence"]], |
|
"offsets": [[0, len(document["sentence"])]], |
|
} |
|
] |
|
|
|
id_to_word = {i["id"]: i for i in document["words"]} |
|
document_["entities"] = [] |
|
for agent in document["agents"]: |
|
word = id_to_word[agent["ref_id"]] |
|
document_["entities"].append( |
|
{ |
|
"id": f"{document_['id']}-agent-{word['id']}", |
|
"type": "agent", |
|
"text": [word["text"]], |
|
"offsets": [ |
|
[word["offsets"][0], word["offsets"][1]] |
|
], |
|
"normalized": [], |
|
} |
|
) |
|
for agent in document["targets"]: |
|
word = id_to_word[agent["ref_id"]] |
|
document_["entities"].append( |
|
{ |
|
"id": f"{document_['id']}-target-{word['id']}", |
|
"type": "target", |
|
"text": [word["text"]], |
|
"offsets": [ |
|
[word["offsets"][0], word["offsets"][1]] |
|
], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
document_["relations"] = [ |
|
{ |
|
"id": next(uid), |
|
"type": "genic_interaction", |
|
"arg1_id": f"{document_['id']}-agent-{relation['ref_id1']}", |
|
"arg2_id": f"{document_['id']}-target-{relation['ref_id2']}", |
|
"normalized": [], |
|
} |
|
for relation in document["genic_interactions"] |
|
] |
|
|
|
document_["events"] = [] |
|
document_["coreferences"] = [] |
|
yield document_["document_id"], document_ |
|
|
|
def _generate_parsed_documents(self, fstream, split): |
|
for raw_document in self._generate_raw_documents(fstream): |
|
yield self._parse_document(raw_document, split) |
|
|
|
def _generate_raw_documents(self, fstream): |
|
raw_document = [] |
|
for line in fstream: |
|
if "%" in line: |
|
continue |
|
elif line.strip(): |
|
raw_document.append(line.strip()) |
|
elif raw_document: |
|
if raw_document: |
|
yield raw_document |
|
raw_document = [] |
|
|
|
if raw_document: |
|
yield raw_document |
|
|
|
def _parse_document(self, raw_document, split): |
|
document = {} |
|
for line in raw_document: |
|
key, value = line.split("\t", 1) |
|
if key in ["ID", "sentence"]: |
|
document[key.lower()] = value |
|
elif key in [ |
|
"words", |
|
"genic_interactions", |
|
"agents", |
|
"targets", |
|
"lemmas", |
|
"syntactic_relations", |
|
]: |
|
document[key.lower()] = self._parse_elements(value, key) |
|
else: |
|
raise NotImplementedError() |
|
|
|
|
|
if split == "test": |
|
document.setdefault("genic_interactions", []) |
|
document.setdefault("agents", []) |
|
document.setdefault("targets", []) |
|
|
|
return document |
|
|
|
def _parse_elements(self, values, type): |
|
return [self._parse_element(atom, type) for atom in values.split("\t")] |
|
|
|
def _parse_element(self, atom, type): |
|
|
|
args = atom.split("(", 1)[1][:-1].split(",") |
|
if type == "words": |
|
|
|
return { |
|
"id": args[0], |
|
"text": args[1].strip("'"), |
|
"offsets": [int(args[2]), int(args[3]) + 1], |
|
} |
|
elif type == "genic_interactions": |
|
return {"ref_id1": args[0], "ref_id2": args[1]} |
|
elif type == "agents": |
|
return {"ref_id": args[0]} |
|
elif type == "targets": |
|
return {"ref_id": args[0]} |
|
elif type == "lemmas": |
|
return {"ref_id": args[0], "lemma": args[1].strip("'")} |
|
elif type == "syntactic_relations": |
|
return {"type": args[0].strip("'"), "ref_id1": args[1], "ref_id2": args[2]} |
|
|