gabrielaltay
commited on
Commit
·
4a683e0
1
Parent(s):
f6b8ff4
upload hubscripts/mediqa_nli_hub.py to hub from bigbio repo
Browse files- mediqa_nli.py +200 -0
mediqa_nli.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Natural Language Inference (NLI) is the task of determining whether a given hypothesis can be
|
18 |
+
inferred from a given premise. Also known as Recognizing Textual Entailment (RTE), this task has
|
19 |
+
enjoyed popularity among researchers for some time. However, almost all datasets for this task
|
20 |
+
focused on open domain data such as as news texts, blogs, and so on. To address this gap, the MedNLI
|
21 |
+
dataset was created for language inference in the medical domain. MedNLI is a derived dataset with
|
22 |
+
data sourced from MIMIC-III v1.4. In order to stimulate research for this problem, a shared task on
|
23 |
+
Medical Inference and Question Answering (MEDIQA) was organized at the workshop for biomedical
|
24 |
+
natural language processing (BioNLP) 2019. The dataset provided herein is a test set of 405 premise
|
25 |
+
hypothesis pairs for the NLI challenge in the MEDIQA shared task. Participants of the shared task
|
26 |
+
are expected to use the MedNLI data for development of their models and this dataset was used as an
|
27 |
+
unseen dataset for scoring each participant submission.
|
28 |
+
|
29 |
+
The files comprising this dataset must be on the users local machine in a single directory that is
|
30 |
+
passed to `datasets.load_datset` via the `data_dir` kwarg. This loader script will read the archive
|
31 |
+
files directly (i.e. the user should not uncompress, untar or unzip any of the files). For example,
|
32 |
+
if `data_dir` is `"mediqa_nli"` it should contain the following files:
|
33 |
+
|
34 |
+
mediqa_nli
|
35 |
+
├── mednli-for-shared-task-at-acl-bionlp-2019-1.0.1.zip
|
36 |
+
"""
|
37 |
+
|
38 |
+
import json
|
39 |
+
import os
|
40 |
+
from typing import Dict, List, Tuple
|
41 |
+
|
42 |
+
import datasets
|
43 |
+
import pandas as pd
|
44 |
+
|
45 |
+
from .bigbiohub import entailment_features
|
46 |
+
from .bigbiohub import BigBioConfig
|
47 |
+
from .bigbiohub import Tasks
|
48 |
+
|
49 |
+
_LANGUAGES = ['English']
|
50 |
+
_PUBMED = False
|
51 |
+
_LOCAL = True
|
52 |
+
_CITATION = """\
|
53 |
+
@misc{https://doi.org/10.13026/gtv4-g455,
|
54 |
+
title = {MedNLI for Shared Task at ACL BioNLP 2019},
|
55 |
+
author = {Shivade, Chaitanya},
|
56 |
+
year = 2019,
|
57 |
+
publisher = {physionet.org},
|
58 |
+
doi = {10.13026/GTV4-G455},
|
59 |
+
url = {https://physionet.org/content/mednli-bionlp19/}
|
60 |
+
}
|
61 |
+
|
62 |
+
"""
|
63 |
+
|
64 |
+
_DATASETNAME = "mediqa_nli"
|
65 |
+
_DISPLAYNAME = "MEDIQA NLI"
|
66 |
+
|
67 |
+
_DESCRIPTION = """\
|
68 |
+
Natural Language Inference (NLI) is the task of determining whether a given hypothesis can be
|
69 |
+
inferred from a given premise. Also known as Recognizing Textual Entailment (RTE), this task has
|
70 |
+
enjoyed popularity among researchers for some time. However, almost all datasets for this task
|
71 |
+
focused on open domain data such as as news texts, blogs, and so on. To address this gap, the MedNLI
|
72 |
+
dataset was created for language inference in the medical domain. MedNLI is a derived dataset with
|
73 |
+
data sourced from MIMIC-III v1.4. In order to stimulate research for this problem, a shared task on
|
74 |
+
Medical Inference and Question Answering (MEDIQA) was organized at the workshop for biomedical
|
75 |
+
natural language processing (BioNLP) 2019. The dataset provided herein is a test set of 405 premise
|
76 |
+
hypothesis pairs for the NLI challenge in the MEDIQA shared task. Participants of the shared task
|
77 |
+
are expected to use the MedNLI data for development of their models and this dataset was used as an
|
78 |
+
unseen dataset for scoring each participant submission.
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
_HOMEPAGE = "https://physionet.org/content/mednli-bionlp19/1.0.1/"
|
83 |
+
|
84 |
+
_LICENSE = 'PhysioNet Credentialed Health Data License'
|
85 |
+
|
86 |
+
_URLS = {}
|
87 |
+
|
88 |
+
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
|
89 |
+
|
90 |
+
_SOURCE_VERSION = "1.0.1"
|
91 |
+
_BIGBIO_VERSION = "1.0.0"
|
92 |
+
|
93 |
+
|
94 |
+
class MEDIQANLIDataset(datasets.GeneratorBasedBuilder):
|
95 |
+
"""MEDIQA NLI"""
|
96 |
+
|
97 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
98 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
99 |
+
|
100 |
+
BUILDER_CONFIGS = [
|
101 |
+
BigBioConfig(
|
102 |
+
name="mediqa_nli_source",
|
103 |
+
version=SOURCE_VERSION,
|
104 |
+
description="MEDIQA NLI source schema",
|
105 |
+
schema="source",
|
106 |
+
subset_id="mediqa_nli",
|
107 |
+
),
|
108 |
+
BigBioConfig(
|
109 |
+
name="mediqa_nli_bigbio_te",
|
110 |
+
version=BIGBIO_VERSION,
|
111 |
+
description="MEDIQA NLI BigBio schema",
|
112 |
+
schema="bigbio_te",
|
113 |
+
subset_id="mediqa_nli",
|
114 |
+
),
|
115 |
+
]
|
116 |
+
|
117 |
+
DEFAULT_CONFIG_NAME = "mediqa_nli_source"
|
118 |
+
|
119 |
+
def _info(self) -> datasets.DatasetInfo:
|
120 |
+
|
121 |
+
if self.config.schema == "source":
|
122 |
+
features = datasets.Features(
|
123 |
+
{
|
124 |
+
"pairID": datasets.Value("string"),
|
125 |
+
"gold_label": datasets.Value("string"),
|
126 |
+
"sentence1": datasets.Value("string"),
|
127 |
+
"sentence2": datasets.Value("string"),
|
128 |
+
"sentence1_parse": datasets.Value("string"),
|
129 |
+
"sentence2_parse": datasets.Value("string"),
|
130 |
+
"sentence1_binary_parse": datasets.Value("string"),
|
131 |
+
"sentence2_binary_parse": datasets.Value("string"),
|
132 |
+
}
|
133 |
+
)
|
134 |
+
|
135 |
+
elif self.config.schema == "bigbio_te":
|
136 |
+
features = entailment_features
|
137 |
+
|
138 |
+
return datasets.DatasetInfo(
|
139 |
+
description=_DESCRIPTION,
|
140 |
+
features=features,
|
141 |
+
homepage=_HOMEPAGE,
|
142 |
+
license=str(_LICENSE),
|
143 |
+
citation=_CITATION,
|
144 |
+
)
|
145 |
+
|
146 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
147 |
+
if self.config.data_dir is None:
|
148 |
+
raise ValueError(
|
149 |
+
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
|
150 |
+
)
|
151 |
+
else:
|
152 |
+
extract_dir = dl_manager.extract(
|
153 |
+
os.path.join(
|
154 |
+
self.config.data_dir,
|
155 |
+
"mednli-for-shared-task-at-acl-bionlp-2019-1.0.1.zip",
|
156 |
+
)
|
157 |
+
)
|
158 |
+
data_dir = os.path.join(
|
159 |
+
extract_dir, "mednli-for-shared-task-at-acl-bionlp-2019-1.0.1"
|
160 |
+
)
|
161 |
+
|
162 |
+
return [
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TEST,
|
165 |
+
gen_kwargs={
|
166 |
+
"examples_filepath": os.path.join(
|
167 |
+
data_dir, "mednli_bionlp19_shared_task.jsonl"
|
168 |
+
),
|
169 |
+
"ground_truth_filepath": os.path.join(
|
170 |
+
data_dir, "mednli_bionlp19_shared_task_ground_truth.csv"
|
171 |
+
),
|
172 |
+
"split": "test",
|
173 |
+
},
|
174 |
+
),
|
175 |
+
]
|
176 |
+
|
177 |
+
def _generate_examples(
|
178 |
+
self, examples_filepath: str, ground_truth_filepath: str, split: str
|
179 |
+
) -> Tuple[int, Dict]:
|
180 |
+
|
181 |
+
ground_truth = pd.read_csv(
|
182 |
+
ground_truth_filepath, index_col=0, squeeze=True
|
183 |
+
).to_dict()
|
184 |
+
with open(examples_filepath, "r") as f:
|
185 |
+
if self.config.schema == "source":
|
186 |
+
for line in f:
|
187 |
+
json_line = json.loads(line)
|
188 |
+
json_line["gold_label"] = ground_truth[json_line["pairID"]]
|
189 |
+
yield json_line["pairID"], json_line
|
190 |
+
|
191 |
+
elif self.config.schema == "bigbio_te":
|
192 |
+
for line in f:
|
193 |
+
json_line = json.loads(line)
|
194 |
+
entailment_example = {
|
195 |
+
"id": json_line["pairID"],
|
196 |
+
"premise": json_line["sentence1"],
|
197 |
+
"hypothesis": json_line["sentence2"],
|
198 |
+
"label": ground_truth[json_line["pairID"]],
|
199 |
+
}
|
200 |
+
yield json_line["pairID"], entailment_example
|