# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import os from dataclasses import dataclass from pathlib import Path from typing import Dict, Iterator, Tuple from xml.etree import ElementTree as ET import datasets from .bigbiohub import pairs_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _LANGUAGES = ['English'] _PUBMED = False _LOCAL = False _CITATION = """\ @inproceedings{MEDIQA2019, author = {Asma {Ben Abacha} and Chaitanya Shivade and Dina Demner{-}Fushman}, title = {Overview of the MEDIQA 2019 Shared Task on Textual Inference, Question Entailment and Question Answering}, booktitle = {ACL-BioNLP 2019}, year = {2019} } """ _DATASETNAME = "mediqa_rqe" _DISPLAYNAME = "MEDIQA RQE" _DESCRIPTION = """\ The MEDIQA challenge is an ACL-BioNLP 2019 shared task aiming to attract further research efforts in Natural Language Inference (NLI), Recognizing Question Entailment (RQE), and their applications in medical Question Answering (QA). Mailing List: https://groups.google.com/forum/#!forum/bionlp-mediqa The objective of the RQE task is to identify entailment between two questions in the context of QA. We use the following definition of question entailment: “a question A entails a question B if every answer to B is also a complete or partial answer to A” [1] [1] A. Ben Abacha & D. Demner-Fushman. “Recognizing Question Entailment for Medical Question Answering”. AMIA 2016. """ _HOMEPAGE = "https://sites.google.com/view/mediqa2019" _LICENSE = 'License information unavailable' _URLS = { _DATASETNAME: "https://github.com/abachaa/MEDIQA2019/archive/refs/heads/master.zip" } _SUPPORTED_TASKS = [Tasks.TEXT_PAIRS_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" class MediqaRQEDataset(datasets.GeneratorBasedBuilder): """MediqaRQE Dataset""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ # Source Schema BigBioConfig( name="mediqa_rqe_source", version=SOURCE_VERSION, description="MEDIQA RQE source schema", schema="source", subset_id="mediqa_rqe_source", ), # BigBio Schema BigBioConfig( name="mediqa_rqe_bigbio_pairs", version=BIGBIO_VERSION, description="MEDIQA RQE BigBio schema", schema="bigbio_pairs", subset_id="mediqa_rqe_bigbio_pairs", ), ] DEFAULT_CONFIG_NAME = "mediqa_rqe_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "pid": datasets.Value("string"), "value": datasets.Value("string"), "chq": datasets.Value("string"), "faq": datasets.Value("string"), } ) elif self.config.schema == "bigbio_pairs": features = pairs_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir / "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-TrainingSet-AMIA2016.xml" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir / "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-ValidationSet-AMIA2016.xml" }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir / "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-TestSet-wLabels.xml" }, ), ] def _generate_examples(self, filepath: Path) -> Iterator[Tuple[str, Dict]]: dom = ET.parse(filepath).getroot() for row in dom.iterfind("pair"): pid = row.attrib["pid"] value = row.attrib["value"] chq = row.find("chq").text.strip() faq = row.find("faq").text.strip() if self.config.schema == "source": yield pid, {"pid": pid, "value": value, "chq": chq, "faq": faq} elif self.config.schema == "bigbio_pairs": yield pid, { "id": pid, "document_id": pid, "text_1": chq, "text_2": faq, "label": value, }